tests/testthat/test-best.R

# This tests the correctness of the getBestTest function.
# library(csaw); library(testthat); source("test-best.R")

autogen <- function(nids, alpha, beta) {
	n <- 1000L
    ids <- round(runif(n, 1, nids))
	tab <- data.frame(logFC=rnorm(n), logCPM=rnorm(n), PValue=rbeta(n, alpha, beta))
    return(list(id=ids, table=tab))
}

set.seed(40000)
test_that("getBestTest works as expected on vanilla input", {
    for (nids in c(10, 100, 1000)) {
        for (beta in c(1, 2, 10)) {
            test <- autogen(nids, 1, beta)
            tab <- test$table
            ids <- test$id
        	best <- getBestTest(ids, tab)
        
            # Checking we get the same result after Bonferroni correction.
        	ref <- aggregate(tab$PValue ~ ids, FUN=function(x) { min(1, x*length(x)) }, data=NULL)	
        	xref <- aggregate(seq_along(ids) ~ ids, FUN=function(x) { x[which.min(tab$PValue[x])] }, data=NULL)	
            expect_equal(best$PValue, ref[,2])
            expect_equal(best$rep.test, xref[,2])
            expect_identical(rownames(best), as.character(sort(unique(ids))))
        
            # Testing what happens with a character vector as input.
            new.names <- paste0("Window", ids)
            out3 <- getBestTest(new.names, tab)
            modbest <- best
            rownames(modbest) <- paste0("Window", rownames(modbest))
            expect_identical(out3[order(rownames(out3)),], modbest[order(rownames(modbest)),])
        }
    }
})

set.seed(40001)
test_that("getBestTest works with alternative options", {
    for (nids in c(10, 100, 1000)) {
        for (beta in c(1, 2, 10)) {
            test <- autogen(nids, 1, beta)
            tab <- test$table
            ids <- test$id

            # Effectively frequency weights.
            w <- runif(length(ids), 1, 10)
            best <- getBestTest(ids, tab, weight=w)
            ref <- aggregate(seq_along(ids) ~ ids, FUN=function(x) { min(1, tab$PValue[x]/w[x]*sum(w[x])) }, data=NULL)	
            xref <- aggregate(seq_along(ids)~ ids, FUN=function(x) { x[which.min(tab$PValue[x]/w[x])] }, data=NULL)	
            expect_equal(best$PValue, ref[,2])
            expect_equal(best$rep.test, xref[,2])

            # Now, searching for the max log-CPM.
            mostab <- getBestTest(ids, tab, by.pval=FALSE)
            ref <- aggregate(seq_along(ids) ~ ids, FUN=function(x) { x[which.max(tab$logCPM[x])] }, data=NULL)
            expect_identical(ref[,2], mostab$rep.test)

            # Changing the column headings.
            ref <- getBestTest(ids, tab)
            retab <- tab
            colnames(retab) <- c("whee", "blah", "yay")
            expect_error(getBestTest(ids, retab), "failed to find")

            out <- getBestTest(ids, retab, pval.col="yay")
            expect_equal(out$yay, ref$PValue)
            expect_identical(out$rep.test, ref$rep.test)

            out2 <- getBestTest(ids, retab, pval.col=3)
            expect_equal(out2, out)

            expect_error(getBestTest(ids, retab, pval.col=c("yay", "yay")), "multiple")
        }
    }
})

set.seed(40002)
test_that("getBestTest handles edge cases correctly", {
    # Checking that unsaturation does not compromise the results.
    test <- autogen(2000, 1, 2)
    tab <- test$table
    ids <- test$id
    expect_true(any(tabulate(ids)==0L)) # saturated.
    
    out <- getBestTest(ids, tab)
    asfac <- factor(ids)
    out2 <- getBestTest(as.integer(asfac), tab)
    expect_identical(rownames(out), levels(asfac)[as.integer(rownames(out2))])
    rownames(out) <- rownames(out2)
    expect_equal(out, out2)

    # Checking what happens if some proportion of the IDs become NA.
    for (prop in c(0.2, 0.5, 0.8)) { 
        test <- autogen(20, 1, 1)
        tab <- test$table
        ids <- test$id
     
        invalid <- sample(length(ids), length(ids) * prop)
        na.ids <- ids
        na.ids[invalid] <- NA_integer_
        out.na <- getBestTest(na.ids, tab)
        out.ref <- getBestTest(na.ids[-invalid], tab[-invalid,])
    
        expect_equal(out.na$PValue, out.ref$PValue)
        expect_identical(rownames(out.na), rownames(out.ref))
        expect_identical(out.na$rep.test, setdiff(seq_len(nrow(tab)), invalid)[out.ref$rep.test]) 
    }

    # Checking for sane behaviour when no IDs are supplied.
    emp <- getBestTest(ids[0], tab[0,])
    expect_identical(nrow(emp), 0L)
    expect_error(getBestTest(ids[0], tab))
    expect_error(getBestTest(ids, tab[0,]))
    expect_error(getBestTest(ids, tab, weight=numeric(0)))
})

Try the csaw package in your browser

Any scripts or data that you put into this service are public.

csaw documentation built on Nov. 12, 2020, 2:03 a.m.