Nothing
#' Plot the explained variance as a function of the number of signatures
#'
#' `plotExplainedVariance()` plots the explained variance of a single tumor
#' genome's mutation patterns as a function of the number of signatures
#' (increasing subsets of signatures) used for decomposition. For each
#' number K of signatures, the highest variance explained by possible
#' subsets of K signatures will be plotted (full or greedy search, see below).
#' This can help to evaluate what minimum threshold for the explained variance
#' can be used to decompose tumor genomes with the function
#' \code{decomposeTumorGenomes}.
#'
#' @usage plotExplainedVariance(genome, signatures, minExplainedVariance=NULL,
#' minNumSignatures=2, maxNumSignatures=NULL, greedySearch=FALSE)
#' @param genome (Mandatory) The mutation load of a single genome in
#' Alexandrov- of Shiraishi-format, i.e. as vector or matrix. The format
#' must be the same as the one used for the \code{signatures} (see below).
#' @param signatures (Mandatory) The list of signatures (vectors,
#' data frames or matrices) which are to be evaluated. Each of the list
#' objects represents one mutational signature. Vectors are used for
#' Alexandrov signatures, data frames or matrices for Shiraishi signatures.
#' @param minExplainedVariance (Optional) If a numeric value between 0 and 1
#' is specified, the plot highlights the smallest subset of signatures which
#' is sufficient to explain at least the specified fraction of the variance
#' of the genome's mutation patterns. If, for example,
#' \code{minExplainedVariance} is 0.99 the smallest subset of signatures
#' that explains at least 99\% of the variance will be highlighted.
#' @param minNumSignatures (Optional) The plot will be generated only for
#' K>=\code{minNumSignatures}.
#' @param maxNumSignatures (Optional) The plot will be generated only for
#' K<=\code{maxNumSignatures}.
#' @param greedySearch (Optional) If \code{greedySearch} is set to \code{TRUE}
#' then not all possible combinations of \code{minNumSignatures} to
#' \code{maxNumSignatures} signatures will be checked. Instead, first all
#' possible combinations for exactly \code{minNumSignatures} will be checked
#' to select the best starting set, then iteratively the next best signature
#' will be added (maximum increase in explained variability) until
#' \code{maxNumSignatures} is reached). NOTE: while this is only an
#' approximation, it is highly recommended for large sets of signatures (>15)!
#' @return Returns (or draws) a plot of the explained variance as a function
#' of the number of signatures.
#' @author Rosario M. Piro\cr Politecnico di Milano\cr Maintainer: Rosario
#' M. Piro\cr E-Mail: <rmpiro@@gmail.com> or <rosariomichael.piro@@polimi.it>
#' @references \url{http://rmpiro.net/decompTumor2Sig/}\cr
#' Krueger, Piro (2019) decompTumor2Sig: Identification of mutational
#' signatures active in individual tumors. BMC Bioinformatics
#' 20(Suppl 4):152.\cr
#' @seealso \code{\link{decompTumor2Sig}}\cr
#' \code{\link{decomposeTumorGenomes}}\cr
#' \code{\link{computeExplainedVariance}}
#' @examples
#'
#' ### get 15 pre-processed Shiraishi signatures computed (object 'signatures')
#' ### from 435 tumor genomes Alexandrov et al (PMID: 23945592)
#' ### using the pmsignature package
#' sfile <- system.file("extdata",
#' "Alexandrov_PMID_23945592_435_tumors-pmsignature-15sig.Rdata",
#' package="decompTumor2Sig")
#' load(sfile)
#'
#' ### load preprocessed breast cancer genomes (object 'genomes') from
#' ### Nik-Zainal et al (PMID: 22608084)
#' gfile <- system.file("extdata",
#' "Nik-Zainal_PMID_22608084-genomes-Shiraishi_5bases_trDir.Rdata",
#' package="decompTumor2Sig")
#' load(gfile)
#'
#' ### plot the explained variance for 2 to 6 signatures of the first genome
#' plotExplainedVariance(genomes[[1]], signatures,
#' minExplainedVariance=0.98, minNumSignatures=2, maxNumSignatures=6)
#'
#' @importFrom graphics abline plot points text
#' @export plotExplainedVariance
plotExplainedVariance <- function(genome, signatures,
minExplainedVariance=NULL,
minNumSignatures=2, maxNumSignatures=NULL,
greedySearch=FALSE) {
# input: gnome = mutation counts for a single genome as matrix or vector
# signatures = a list of signatures (matrices or vectors)
# [need to have the same format]
if (!isSignatureSet(signatures)) {
stop("Parameter 'signatures' must be a set (list) of signatures!")
}
if (isSignatureSet(genome)) { # it's a list of genomes
if (length(genome) == 1) { # accept if only one!
genome <- genome[[1]]
} else { # more than one genome
stop(paste("plotExplainedVariance can plot the explained",
"variance for only one genome!"))
}
}
if (!is.probability.object(genome)) {
stop("'genome' must be a genome in Alexandrov or Shiraishi format!")
}
# check the genome format; same as signature format?
if (!sameSignatureFormat(list(genome), signatures)) {
stop("Formats of genome and signatures must match!")
}
# is the signatures are unnamed, name them by enumerating them
if(is.null(names(signatures))) {
names(signatures) <- paste0("sign_",seq_along(signatures))
}
# if maximum number of signatures is not defined, set it to the total
# number of signatures
if(is.null(maxNumSignatures)) {
maxNumSignatures <- length(signatures)
}
# greedySearch must be logical
if (!is.logical(greedySearch)) {
stop("greedySearch must be logical (TRUE or FALSE)!")
}
bestDecompositions <- list()
# iterating for all possible numbers of signatures from minNumSignatures
# to maxNumSignatures
if(!greedySearch) {
# not greedy; test ALL combinations
for (k in seq(minNumSignatures,maxNumSignatures)) {
bestDecompositions[[length(bestDecompositions)+1]] <-
getBestDecomp4Ksignatures(genome, signatures, k)
}
} else {
# greedy; test all combinations of minNumSignatures, then increase
k <- minNumSignatures
bestDecompositions[[length(bestDecompositions)+1]] <-
getBestDecomp4Ksignatures(genome, signatures, k)
while(k < maxNumSignatures) {
# need to add another signature
haveSubset <-
bestDecompositions[[length(bestDecompositions)]]$sigList
bestDecompositions[[length(bestDecompositions)+1]] <-
addBestSignatureToSubset(genome, signatures, haveSubset)
k <- k + 1
}
}
# now plot:
# k on x-axis;
# expl. var on y-axis;
# min. k with expl. var >= thres in red
k <- vapply(bestDecompositions, function(x) { x$k }, FUN.VALUE=numeric(1) )
explVar <- vapply(bestDecompositions, function(x) { x$explVar },
FUN.VALUE=numeric(1) )
sigList <- lapply(bestDecompositions, function(x) { x$sigList } ) # list
minExplVarIndex <- NULL
if (!is.null(minExplainedVariance)) {
whichExceed <- which(explVar >= minExplainedVariance)
if (length(whichExceed) > 0) {
minExplVarIndex <- whichExceed[1] # first to exceed the threshold
}
}
yrange <- c(max(min(explVar),0), 1)
# basic plot
plot(k, explVar, xlab="number of signatures",
ylab="highest explained variance", ylim=yrange)
abline(h=1, lty=2, col="black")
# indicate threshold for minimum explained variance?
if (!is.null(minExplVarIndex)) {
# indicate desired threshold for explained variance
abline(h=minExplainedVariance, lty=2, col="red")
y4Label <- minExplainedVariance - 2*(max(explVar)-min(explVar))/100
text(c(maxNumSignatures), c(y4Label),
paste("min. explained variance: ",minExplainedVariance),
cex=0.6, pos=2, col="red")
# also highlight the signatures exceeding the threshold
points(c(k[minExplVarIndex]), c(explVar[minExplVarIndex]), bg="red",
col="black", pch=21)
text(c(k[minExplVarIndex]),
c(min(explVar)+(max(explVar)-min(explVar))/2),
paste(sigList[[minExplVarIndex]], collapse="\n"), cex=0.6,
pos=4, col="red")
abline(v=k[minExplVarIndex], lty=3, col="red")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.