Nothing
##' @rdname cnetplot
##' @exportMethod cnetplot
setMethod("cnetplot", signature(x = "enrichResult"),
function(x, showCategory = 5,
foldChange = NULL, layout = "kk", ...) {
cnetplot.enrichResult(x, showCategory = showCategory,
foldChange = foldChange, layout = layout, ...)
})
##' @rdname cnetplot
##' @exportMethod cnetplot
setMethod("cnetplot", signature(x = "gseaResult"),
function(x, showCategory = 5,
foldChange = NULL, layout = "kk", ...) {
cnetplot.enrichResult(x, showCategory = showCategory,
foldChange = foldChange, layout = layout, ...)
})
##' @rdname cnetplot
##' @exportMethod cnetplot
setMethod("cnetplot", signature(x = "compareClusterResult"),
function(x, showCategory = 5,
foldChange = NULL, layout = "kk", ...) {
cnetplot.compareClusterResult(x, showCategory = showCategory,
foldChange = foldChange, layout = layout, ...)
})
##' @rdname cnetplot
##' @param colorEdge whether coloring edge by enriched terms
##' @param circular whether using circular layout
##' @param node_label select which labels to be displayed.
##' one of 'category', 'gene', 'all' and 'none', default is "all".
##' @param cex_category number indicating the amount by which plotting category
##' nodes should be scaled relative to the default.
##' @param cex_gene number indicating the amount by which plotting gene nodes
##' should be scaled relative to the default.
##' @param node_label_size size of node label, this parameter has been
##' changed to cex_label_category and cex_label_gene
##' @param cex_label_category scale of category node label size
##' @param cex_label_gene scale of gene node label size
##' @importFrom ggraph geom_edge_arc
##' @importFrom ggplot2 scale_colour_gradient2
##' @author Guangchuang Yu
cnetplot.enrichResult <- function(x,
showCategory = 5,
foldChange = NULL,
layout = "kk",
colorEdge = FALSE,
circular = FALSE,
node_label = "all",
cex_category = 1,
cex_gene = 1,
node_label_size = NULL,
cex_label_category = 1,
cex_label_gene = 1,
...) {
if (!is.null(node_label_size))
message("node_label_size parameter has been changed to 'cex_label_category' and 'cex_label_gene'")
# if (is.null(5 * cex_label_category)) {
# if (!is.null(node_label_size)) {
# 5 * cex_label_category <- node_label_size
# } else {
# 5 * cex_label_category <- 5
# }
# }
# if (is.null(5 * cex_label_gene)) {
# if (!is.null(node_label_size)) {
# 5 * cex_label_gene <- node_label_size
# } else {
# 5 * cex_label_gene <- 5
# }
# }
label_category <- 5
label_gene <- 5
node_label <- match.arg(node_label, c("category", "gene", "all", "none"))
if (circular) {
layout <- "linear"
geom_edge <- geom_edge_arc
} else {
geom_edge <- geom_edge_link
}
geneSets <- extract_geneSets(x, showCategory)
g <- list2graph(geneSets)
foldChange <- fc_readable(x, foldChange)
size <- sapply(geneSets, length)
V(g)$size <- min(size)/2
n <- length(geneSets)
V(g)$size[1:n] <- size
node_scales <- c(rep(cex_category, n), rep(cex_gene, (length(V(g)) - n)))
if (colorEdge) {
E(g)$category <- rep(names(geneSets), sapply(geneSets, length))
edge_layer <- geom_edge(aes_(color = ~category), alpha=.8)
} else {
edge_layer <- geom_edge(alpha=.8, colour='darkgrey')
}
if (!is.null(foldChange)) {
fc <- foldChange[V(g)$name[(n+1):length(V(g))]]
V(g)$color <- NA
V(g)$color[(n+1):length(V(g))] <- fc
show_legend <- c(TRUE, FALSE)
names(show_legend) <- c("color", "size")
p <- ggraph(g, layout=layout, circular = circular)
p <- p + edge_layer +
# geom_node_point(aes_(color=~as.numeric(as.character(color)),
geom_node_point(aes_(color=~I("#E5C494"), size=~size),
data = p$data[1:n, ]) +
scale_size(range=c(3, 8) * cex_category) +
ggnewscale::new_scale("size") +
ggnewscale::new_scale_color() +
geom_node_point(aes_(color=~as.numeric(as.character(color)), size=~size),
data = p$data[-(1:n), ], show.legend = show_legend) +
scale_size(range=c(3, 3) * cex_gene) +
scale_colour_gradient2(name = "fold change", low = "blue",
mid = "white", high = "red")
} else {
V(g)$color <- "#B3B3B3"
V(g)$color[1:n] <- "#E5C494"
p <- ggraph(g, layout=layout, circular=circular)
p <- p + edge_layer +
geom_node_point(aes_(color=~I(color), size=~size), data = p$data[1:n, ]) +
scale_size(range=c(3, 8) * cex_category) +
ggnewscale::new_scale("size") +
geom_node_point(aes_(color=~I(color), size=~size),
data = p$data[-(1:n), ], show.legend = FALSE) +
scale_size(range=c(3, 3) * cex_gene)
}
p <- p + theme_void()
# gan jue zhe li duo chi yi ju, zhi qian yi jing ba bu xu yao de she zhi cheng le ""
if (node_label == "category") {
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, bg.color = "white")
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category)
}
} else if (node_label == "gene") {
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-c(1:n),],
repel=TRUE, size = label_gene * cex_label_gene, bg.color = "white")
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-c(1:n),],
repel=TRUE, size = label_gene * cex_label_gene)
}
} else if (node_label == "all") {
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-c(1:n),],
repel=TRUE, size = label_gene * cex_label_gene, bg.color = "white") +
geom_node_text(aes_(label=~name), repel=TRUE,
size = label_category * cex_label_category, bg.color = "white", data = p$data[1:n,])
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-c(1:n),],
repel=TRUE, size = label_gene * cex_label_gene) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
repel=TRUE, size = label_category * cex_label_category)
}
}
return(p)
}
##' @param colorEdge whether coloring edge by enriched terms
##' @param circular whether using circular layout
##' @param node_label select which labels to be displayed.
##' one of 'category', 'gene', 'all' and 'none', default is "all".
##' @param split separate result by 'category' variable
##' @param pie proportion of clusters in the pie chart, one of 'equal' (default) or 'Count'
##' @param pie_scale scale of pie chart, this parameter has been changed to "node_scale"
##' @param legend_n number of circle in legend
##' @param x_loc,y_loc the location of scatterpie legend
##' @importFrom ggraph geom_edge_arc
##' @noRd
cnetplot.compareClusterResult <- function(x,
showCategory = 5,
foldChange = NULL,
layout = "kk",
colorEdge = FALSE,
circular = FALSE,
node_label = "all",
split=NULL,
pie = "equal",
pie_scale = NULL,
cex_category = 1,
cex_gene = 1,
legend_n = 5,
node_label_size = NULL,
x_loc = NULL,
y_loc = NULL,
cex_label_category = 1,
cex_label_gene = 1,
...) {
if (!is.null(node_label_size))
message("node_label_size parameter has been changed to 'cex_label_category' and 'cex_label_gene'")
# if (is.null(5 * cex_label_category)) {
# if (!is.null(node_label_size)) {
# cex_label_category <- node_label_size
# } else {
# cex_label_category <- 2.5
# }
# }
# if (is.null(5 * cex_label_gene)) {
# if (!is.null(node_label_size)) {
# cex_label_gene <- node_label_size
# } else {
# cex_label_gene <- 2.5
# }
# }
if (!is.null(pie_scale))
message("pie_scale parameter has been changed to 'cex_category' and 'cex_gene'")
if (is.null(cex_category)) {
if (!is.null(pie_scale)) {
cex_category <- pie_scale
} else {
cex_category <- 1
}
}
if (is.null(cex_gene)) {
if (!is.null(pie_scale)) {
cex_gene <- pie_scale
} else {
cex_gene <- 1
}
}
label_category <- 2.5
label_gene <- 2.5
range_category_size <- c(3, 8)
range_gene_size <- c(3, 3)
y <- fortify(x, showCategory=showCategory,
includeAll=TRUE, split=split)
y$Cluster <- sub("\n.*", "", y$Cluster)
y_union <- get_y_union(y = y, showCategory = showCategory)
y <- y[y$ID %in% y_union$ID, ]
node_label <- match.arg(node_label, c("category", "gene", "all", "none"))
if (circular) {
layout <- "linear"
geom_edge <- geom_edge_arc
} else {
geom_edge <- geom_edge_link
}
#geneSets <- extract_geneSets(x, showCategory)
geneSets <- setNames(strsplit(as.character(y_union$geneID), "/",
fixed = TRUE), y_union$Description)
n <- length(geneSets)
g <- list2graph(geneSets)
edge_layer <- geom_edge(alpha=.8, colour='darkgrey')
if(is.null(dim(y)) | nrow(y) == 1) {
V(g)$size <- 1
V(g)$size[1] <- 3
V(g)$color <- "#B3B3B3"
V(g)$color[1] <- "#E5C494"
title <- y$Cluster
p <- ggraph(g, layout=layout, circular=circular)
p <- p + edge_layer + theme_void() +
# geom_node_point(aes_(color=~I(color), size=~size)) +
# labs(title= title) +
# scale_size(range=c(3, 8) * mean(node_scales)) + theme(legend.position="none")
geom_node_point(aes_(color=~I(color), size=~size),
data = p$data[1:n, ]) +
scale_size(range = range_category_size * cex_category) +
ggnewscale::new_scale("size") +
geom_node_point(aes_(color=~I(color), size=~size),
data = p$data[-(1:n), ], show.legend = FALSE) +
scale_size(range = range_gene_size * cex_gene) +
labs(title= title) +
theme(legend.position="none")
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, bg.color = "white", repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, bg.color = "white", repel=TRUE)
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, repel=TRUE)
}
return(p)
}
if(is.null(dim(y_union)) | nrow(y_union) == 1) {
p <- ggraph(g) + edge_layer
} else {
p <- ggraph(g, layout=layout, circular=circular) + edge_layer
}
#pie chart begin
#obtain the cluster distribution of each GO term and gene
ID_Cluster_mat <- prepare_pie_category(y, pie=pie)
gene_Cluster_mat <- prepare_pie_gene(y)
if(ncol(ID_Cluster_mat) > 1) {
clusters <- match(colnames(ID_Cluster_mat),colnames(gene_Cluster_mat))
ID_Cluster_mat <- ID_Cluster_mat[,clusters]
gene_Cluster_mat <- gene_Cluster_mat[,clusters]
}
ID_Cluster_mat2 <- rbind(ID_Cluster_mat,gene_Cluster_mat)
#add the coordinates
aa <- p$data
ii <- match(rownames(ID_Cluster_mat2), aa$name)
ID_Cluster_mat2$x <- aa$x[ii]
ID_Cluster_mat2$y <- aa$y[ii]
#add the radius of the pie chart, the radius of go terms mean the number of genes
ii <- match(rownames(ID_Cluster_mat2)[1:n], y_union$Description)
node_scales <- c(rep(cex_category, n), rep(cex_gene, (length(V(g)) - n)))
# sum_yunion <- sum(y_union[ii,9])
sum_yunion <- sum(y_union[ii, "Count"])
sizee <- sqrt(y_union[ii, "Count"] / sum_yunion)
ID_Cluster_mat2$radius <- min(sizee)/2 * sqrt(cex_gene)
ID_Cluster_mat2$radius[1:n] <- sizee * sqrt(cex_category)
if(is.null(x_loc)) x_loc <- min(ID_Cluster_mat2$x)
if(is.null(y_loc)) y_loc <- min(ID_Cluster_mat2$y)
#node_label
if (node_label == "category") {
p$data$name[(n+1):nrow(p$data)] <- ""
} else if (node_label == "gene") {
p$data$name[1:n] <- ""
} else if (node_label == "none") {
p$data$name <- ""
}
if(ncol(ID_Cluster_mat2) > 4) {
## should not have foldChange
if (!is.null(foldChange)) {
log_fc <- abs(foldChange)
genes <- rownames(ID_Cluster_mat2)[(n+1):nrow(ID_Cluster_mat2)]
gene_fc <- rep(1,length(genes))
gid <- names(log_fc)
#Turn the id of gid into gene symbols
ii <- gid %in% names(x@gene2Symbol)
gid[ii] <- x@gene2Symbol[gid[ii]]
ii <- match(genes,gid)
gene_fc <- log_fc[ii]
gene_fc[is.na(gene_fc)] <- 1
gene_fc2 <- c(rep(1,n),gene_fc)
#Assign value to the size of the genes
# ID_Cluster_mat2$radius <- min(sizee)/2*gene_fc2
# ID_Cluster_mat2$radius[1:n] <- sizee
ID_Cluster_mat2$radius <- min(sizee)/2*gene_fc2 * sqrt(cex_gene)
ID_Cluster_mat2$radius[1:n] <- sizee * sqrt(cex_category)
# p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius),
# data=ID_Cluster_mat2,
# cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)],
# color=NA) +
p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius),
data=ID_Cluster_mat2[1:n, ],
cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA) +
geom_scatterpie_legend(ID_Cluster_mat2$radius[1:n],
x=x_loc, y=y_loc + 3, n = legend_n, labeller=function(x) round(x^2 * sum_yunion / cex_category)) +
geom_scatterpie(aes_(x=~x,y=~y,r=~radius),
data=ID_Cluster_mat2[-(1:n), ],
cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)],
color=NA, show.legend = FALSE) +
coord_equal()+
geom_scatterpie_legend(ID_Cluster_mat2$radius[(n+1):nrow(ID_Cluster_mat2)],
x=x_loc, y=y_loc, n = legend_n,
labeller=function(x) round(x*2/(min(sizee))/sqrt(cex_gene),3)) +
ggplot2::annotate("text", x = x_loc + 3, y = y_loc, label = "log2FC") +
ggplot2::annotate("text", x = x_loc + 3, y = y_loc + 3, label = "gene number")
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, bg.color = "white", repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, bg.color = "white", repel=TRUE)
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, repel=TRUE)
}
p <- p + theme_void() + labs(fill = "Cluster")
return(p)
}
## should not have foldChange
# p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius), data=ID_Cluster_mat2,
# cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)],
# color=NA) +
# coord_equal()
p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius),
data=ID_Cluster_mat2[1:n, ],
cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA) +
geom_scatterpie(aes_(x=~x,y=~y,r=~radius),
data=ID_Cluster_mat2[-(1:n), ],
cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)],
color=NA, show.legend = FALSE) +
coord_equal() +
geom_scatterpie_legend(ID_Cluster_mat2$radius[1:n],
x=x_loc, y=y_loc, n = legend_n, labeller=function(x) round(x^2 * sum_yunion / cex_category)) +
ggplot2::annotate("text", x = x_loc + 3, y = y_loc, label = "gene number")
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, bg.color = "white", repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, bg.color = "white", repel=TRUE)
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, repel=TRUE)
}
p <- p + theme_void() + labs(fill = "Cluster")
return(p)
}
title <- colnames(ID_Cluster_mat2)[1]
V(g)$size <- ID_Cluster_mat2$radius
V(g)$color <- "#B3B3B3"
V(g)$color[1:n] <- "#E5C494"
p <- ggraph(g, layout=layout, circular=circular)
p <- p + edge_layer +
geom_node_point(aes_(color=~I(color), size=~size),
data = p$data[1:n, ]) +
scale_size(range = range_category_size * cex_category) +
ggnewscale::new_scale("size") +
geom_node_point(aes_(color=~I(color), size=~size),
data = p$data[-(1:n), ], show.legend = FALSE) +
scale_size(range = range_gene_size * cex_gene) +
labs(title= title)
if (utils::packageVersion("ggrepel") >= "0.9.0") {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, bg.color = "white", repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, bg.color = "white", repel=TRUE)
} else {
p <- p + geom_node_text(aes_(label=~name), data = p$data[-(1:n),],
size = label_gene * cex_label_gene, repel=TRUE) +
geom_node_text(aes_(label=~name), data = p$data[1:n,],
size = label_category * cex_label_category, repel=TRUE)
}
p + theme_void() + theme(legend.position="none")
}
##' convert a list of gene IDs to igraph object.
##'
##'
##' @title convert gene IDs to igraph object
##' @param inputList a list of gene IDs
##' @return a igraph object.
##' @importFrom igraph graph.data.frame
##' @author Guangchuang Yu
list2graph <- function(inputList) {
x <- list2df(inputList)
g <- graph.data.frame(x, directed=FALSE)
return(g)
}
list2df <- function(inputList) {
# ldf <- lapply(1:length(inputList), function(i) {
ldf <- lapply(seq_len(length(inputList)), function(i) {
data.frame(categoryID=rep(names(inputList[i]),
length(inputList[[i]])),
Gene=inputList[[i]])
})
do.call('rbind', ldf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.