Description Methods Slots Author(s) See Also Examples
Object wich wraps all the items returned by geNetClassifier
. It usually contains the classifier, the genes ranking and information, the network and any other requested statistics.
signature(x = "GeNetClassifierReturn")
: Shows the available slots in the object.
signature(object = "GeNetClassifierReturn")
: Shows an overview of all the slots in the object.
Available slots deppends on the arguments used to call geNetClassifier()
:
call
:call. Always available.
classifier
:list. SVM classifier. Only available if geNetClassifier() was called with option buildClassifier=TRUE
(default settings).
classificationGenes
:GenesRanking
. Genes used to train the classifier. Only available if geNetClassifier() was called with option buildClassifier=TRUE
(default settings).
generalizationError
:GeneralizationError
. Statistics calculated for the current training set and options.
Only available if geNetClassifier() was called with option estimateGError=TRUE
(False by default).
genesRanking
:GenesRanking
. Whole genes ranking (if returnAllGenesRanking=TRUE
) or significant genes ranking (if returnAllGenesRanking=FALSE
, includes only the genes with posterior probability over lpThreshold
)
genesRankingType
:character. "all", "significant" or "significantNonRedundant"
genesNetwork
:List of GenesNetwork
. Only available if geNetClassifier() was called with option calculateNetwork=TRUE
(default settings).
genesNetworkType
:character. At the moment, only "topGenes" available.
Bioinformatics and Functional Genomics Group. Centro de Investigacion del Cancer (CIC-IBMCC, USAL-CSIC). Salamanca. Spain
Main package function and classifier training: geNetClassifier
plot.GeNetClassifierReturn
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | ######
# Load data and train a classifier
######
# Load an expressionSet:
library(leukemiasEset)
data(leukemiasEset)
# Select the train samples:
trainSamples<- c(1:10, 13:22, 25:34, 37:46, 49:58)
# summary(leukemiasEset$LeukemiaType[trainSamples])
# Train a classifier or load a trained one:
# leukemiasClassifier <- geNetClassifier(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType", plotsName="leukemiasClassifier")
data(leukemiasClassifier) # Sample trained classifier
######
# Explore the returned object
######
# Global view of the object and its structure:
leukemiasClassifier
names(leukemiasClassifier)
### Depending on the available slots:
# Call and acess to the classifier:
leukemiasClassifier@call
leukemiasClassifier@classifier
# Genes used for training the classifier:
numGenes(leukemiasClassifier@classificationGenes)
leukemiasClassifier@classificationGenes
# Show de tetails of the genes of a class
genesDetails(leukemiasClassifier@classificationGenes)$AML
# If your R console wraps the table rows, try widening your display width:
# options(width=200)
# Generalization Error estimated by cross-validation:
leukemiasClassifier@generalizationError
overview(leukemiasClassifier@generalizationError)
# i.e. probabilityMatrix:
leukemiasClassifier@generalizationError@probMatrix
# i.e. statistics of the genes chosen in any of the CV loops for for AML:
leukemiasClassifier@generalizationError@classificationGenes.stats$AML
# List of Networks by classes:
leukemiasClassifier@genesNetwork
# Access to the nodes or edges of each network:
getEdges(leukemiasClassifier@genesNetwork$AML)
getNodes(leukemiasClassifier@genesNetwork$AML)
# Genes ranking:
leukemiasClassifier@genesRanking
# Number of available genes in the ranking:
numGenes(leukemiasClassifier@genesRanking)
# Number of significant genes
# (genes with posterior probability over lpThreshold, default=0.95)
numSignificantGenes(leukemiasClassifier@genesRanking)
# Top 10 genes of CML:
genesDetails(leukemiasClassifier@genesRanking)$CML[1:10,]
# To get a sub ranking with the top 10 genes:
getTopRanking(leukemiasClassifier@genesRanking, 10)
# Genes details of the top 10 genes:
genesDetails(getTopRanking(leukemiasClassifier@genesRanking, 10))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.