Description Slots Methods Author(s) See Also Examples
Contains the estimation of the Generalization Error and the gene stats for geNetClassifier
executed with the given data and parameters. \
Calculated by 5-fold cross-validation.
accuracy
:"Matrix"
. Accuracy and call rate.
sensitivitySpecificity
:"Matrix"
. Sensitivity, Specificity, Matthews Correlation Coefficient and Call Rate for each
of the classes.
confMatrix
:"Matrix"
. Confussion matrix.
probMatrix
:"Matrix"
. Probabilities of belonging to each class for the assigned samples. Helps identifying
where errors are likely to occur even though there were not actual errors in the cross-validation.
querySummary
:"List"
. Stats regarding the probability and number of assigned test samples to each class.
classificationGenes.stats
:"List"
. Some basic statistics regarding the chosen genes.
classificationGenes.num
:"Matrix"
. Number of genes used for each of the 5 cross-validaton classifiers.
signature(object = "GeneralizationError")
: Shows an overview of all the slots in the object.
Bioinformatics and Functional Genomics Group. Centro de Investigacion del Cancer (CIC-IBMCC, USAL-CSIC). Salamanca. Spain
Main package function and classifier training:
geNetClassifier
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
######
# Load data and train a classifier
######
# Load an expressionSet:
library(leukemiasEset)
data(leukemiasEset)
# Select the train samples:
trainSamples<- c(1:10, 13:22, 25:34, 37:46, 49:58)
# summary(leukemiasEset$LeukemiaType[trainSamples])
# Train a classifier or load a trained one:
# Note: Required 'estimateGError=TRUE'
# leukemiasClassifier <- geNetClassifier(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",
# estimateGError=TRUE)
data(leukemiasClassifier) # Sample trained classifier
# Global view of the returned object and its structure:
leukemiasClassifier
names(leukemiasClassifier)
#########
# Exploring the cross validation stats
# Note: Required 'estimateGError=TRUE' in geNetClassifier()
#########
# Generalization Error estimated by cross-validation:
leukemiasClassifier@generalizationError
overview(leukemiasClassifier@generalizationError)
# i.e. probabilityMatrix:
leukemiasClassifier@generalizationError@probMatrix
# i.e. statistics of the genes chosen in any of the CV loops for for AML:
leukemiasClassifier@generalizationError@classificationGenes.stats$AML
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.