Description Usage Arguments Value Author(s) See Also Examples
View source: R/functions.public.R
Taking as input the confussion matrix resulting from external validation calculates the global Accuracy, Call Rate, Sensitivity, Specificity and Matthews Correlation Coefficient.
1 | externalValidation.stats(confussionMatrix, numDecimals = 2)
|
confussionMatrix |
Confussion matrix containing the real class as rows and the assigned class as columns. |
numDecimals |
Integer. Number of decimals to show on the statistics. |
List:
global General classifier stats.
Accuracy: Percentage of correctly assigned samples within all assigned samples.
CallRate: Percentage of samples wich were assigned to a class.
byClass Stats by class.
Sensitivity: Percentage of samples of each class which were correctly identified (Rate of true positives)
Specificity: Percentage of samples assigned to a given class that really belonged to the class (Rate of true negatives)
MCC (Matthews Correlation Coefficient): Measure wich takes into account both, true and false positives and negatives. (100%: Perfect assignments)
confMatrix Confussion matrix.
Bioinformatics and Functional Genomics Group. Centro de Investigacion del Cancer (CIC-IBMCC, USAL-CSIC). Salamanca. Spain
Main package function and classifier training: geNetClassifier
Querying the classifier: queryGeNetClassifier
Generating the probability matrix: externalValidation.probMatrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ##########################
## Classifier training
##########################
# Load an expressionSet:
library(leukemiasEset)
data(leukemiasEset)
# Select the train samples:
trainSamples<- c(1:10, 13:22, 25:34, 37:46, 49:58)
# summary(leukemiasEset$LeukemiaType[trainSamples])
# Train a classifier or load a trained one:
# leukemiasClassifier <- geNetClassifier(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType", plotsName="leukemiasClassifier")
data(leukemiasClassifier) # Sample trained classifier
##########################
## External Validation:
##########################
# Select the samples to query the classifier
# - External validation: samples not used for training
testSamples <- c(1:60)[-trainSamples]
# Make a query to the classifier:
queryResult <- queryGeNetClassifier(leukemiasClassifier, leukemiasEset[,testSamples])
# Create the confusion matrix
confMatrix <- table(leukemiasEset[,testSamples]$LeukemiaType,queryResult$class)
# Calculate its accuracy, call rate, sensitivity and specificity:
externalValidation.stats(confMatrix)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.