iCluster: Integrative clustering of multiple genomic data types

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/iCluster.R

Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assigment based on joint inference across data types

Usage

1
iCluster(datasets, k, lambda, scalar=FALSE, max.iter=50,epsilon=1e-3)

Arguments

datasets

A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features.

k

Number of subtypes.

lambda

Vector of length-m lasso penalty terms.

scalar

If TRUE, assumes scalar covariance matrix Psi. Default is FALSE.

max.iter

Maximum iteration for the EM algorithm.

epsilon

EM algorithm convegence criterion.

Value

A list with the following elements.

meanZ

Relaxed cluster indicator matrix.

beta

Coefficient matrix.

clusters

Cluster assigment.

conv.rate

Convergence history.

Author(s)

Ronglai Shen shenr@mskcc.org

References

Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.

See Also

breast.chr17,plotiCluster, compute.pod

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
data(breast.chr17)
fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2))
plotiCluster(fit=fit, label=rownames(breast.chr17[[2]]))
compute.pod(fit)

#library(gplots)
#library(lattice)
#col.scheme = alist()
#col.scheme[[1]] = bluered(256)
#col.scheme[[2]] = greenred(256)
#cn.image=breast.chr17[[2]]
#cn.image[cn.image>1.5]=1.5
#cn.image[cn.image< -1.5]= -1.5
#exp.image=breast.chr17[[1]]
#exp.image[exp.image>3]=3
#exp.image[exp.image< -3]=3
#plotHeatmap(fit, datasets=list(cn.image,exp.image), type=c("gaussian","gaussian"),
#  row.order=c(FALSE,FALSE), width=5, col.scheme=col.scheme)

iClusterPlus documentation built on Nov. 8, 2020, 8:01 p.m.