iClusterPlus: Integrative clustering of multiple genomic data types

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/iClusterPlus.R

Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iClusterPlus fits a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data types

Usage

1
2
3
4
iClusterPlus(dt1,dt2=NULL,dt3=NULL,dt4=NULL,
	type=c("gaussian","binomial","poisson","multinomial"),
 	K=2,alpha=c(1,1,1,1),lambda=c(0.03,0.03,0.03,0.03),
	n.burnin=100,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)

Arguments

dt1

A data matrix. The rows represent samples, and the columns represent genomic features.

dt2

A data matrix. The rows represent samples, and the columns represent genomic features.

dt3

A data matrix. The rows represent samples, and the columns represent genomic features.

dt4

A data matrix. The rows represent samples, and the columns represent genomic features.

type

Data type, which can be gaussian, binomial, poisson, multinomial.

K

The number of eigen features. Given K, the number of cluster is K+1.

alpha

Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1.

lambda

Vector of lasso penalty terms.

n.burnin

Number of MCMC burnin.

n.draw

Number of MCMC draw.

maxiter

Maximum iteration for the EM algorithm.

sdev

standard deviation of random walk proposal.

eps

Algorithm convergence criterion.

Value

A list with the following elements.

alpha

Intercept parameter.

beta

Information parameter.

clusters

Cluster assignment.

centers

Cluster center.

meanZ

Latent variable.

BIC

Bayesian information criterion.

dev.ratio

see dev.ratio defined in glmnet package.

dif

absolute difference for the parameters in the last and next-to-last iterations.

Author(s)

Qianxing Mo qianxing.mo@moffitt.org,Ronglai Shen, Sijian Wang

References

Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA. 110(11):4245-50.

See Also

plotiCluster,iCluster, compute.pod

Examples

1
# see iManual.pdf

Example output

Loading required package: parallel

iClusterPlus documentation built on Nov. 8, 2020, 8:01 p.m.