Description Usage Arguments Value Author(s) References See Also Examples
Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assigment based on joint inference across data types
1 2 |
x |
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features. |
K |
Number of subtypes. |
lambda |
A list with m elements; each element is a vector with one or two elements depending on the methods used. |
method |
Method used for clustering and variable selection. |
chr |
Chromosome labels |
maxiter |
Maximum iteration for the EM algorithm. |
eps |
EM algorithm convegence criterion 1. |
eps2 |
EM algorithm convegence criterion 2. |
A list with the following elements.
cluster |
Cluster assigment. |
centers |
cluster centers. |
Phivec |
parameter phi; a vector. |
beta |
parameter B; a matrix. |
meanZ |
meanZ |
EZZt |
EZZt |
dif |
difference |
iter |
iteration |
Qianxing Mo qianxing.mo@moffitt.org,Ronglai Shen,Sijian Wang
Ronglai Shen, Sijian Wang, Qianxing Mo. (2013). Sparse Integrative Clustering of Multiple Omics Data Sets. Annals of Applied Statistics. 7(1):269-294
plotiCluster
, compute.pod
, iClusterPlus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | ## clustering
n1 = 20
n2 = 20
n3 = 20
n = n1+n2+n3
p = 5
q = 100
x = NULL
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a,x2a,x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[1]] = cbind(xa,xb)
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a,x2a,x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[2]] = cbind(xa,xb)
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a,x2a,x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[3]] = cbind(xa,xb)
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a,x2a,x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[4]] = cbind(xa,xb)
x1a = matrix(rnorm(n1*p), ncol=p)
x2a = matrix(rnorm(n1*p, -1.5,1), ncol=p)
x3a = matrix(rnorm(n1*p, 1.5, 1), ncol=p)
xa = rbind(x1a,x2a,x3a)
xb = matrix(rnorm(n*q), ncol=q)
x[[5]] = cbind(xa,xb)
method = c('lasso', 'enet', 'flasso', 'glasso', 'gflasso')
lambda=alist()
lambda[[1]] = 30
lambda[[2]] = c(20,1)
lambda[[3]] = c(20,20)
lambda[[4]] = 30
lambda[[5]] = c(30,20)
chr=c(rep(1,10),rep(2,(p+q)-10))
date()
fit2 = iCluster2(x, K=3, lambda, method=method, chr=chr, maxiter=20,eps=1e-4, eps2=1e-8)
date()
par(mfrow=c(5,1),mar=c(4,4,1,1))
for(i in 1:5){
barplot(fit2$beta[[i]][,1])
}
#library(gplots)
#library(lattice)
#plotHeatmap(fit2, datasets=x, type=rep("gaussian",length(x)),
#row.order=c(TRUE,TRUE,FALSE,TRUE,FALSE),
#sparse=rep(FALSE,length(x)), scale=rep("row",5), width=5,
#col.scheme=rep(list(bluered(256)),length(x)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.