Nothing
## selmod.R
selectModel <- function(y, designlist, criterion="aic", df.prior=0, s2.prior=NULL, s2.true=NULL, ...)
# y is a data matrix to be fitted, with rows as genes and columns as arrays.
# designlist is a list of design matrices to be compared.
# The function returns AIC or BIC values for each design
# and the prefered model for each gene with minimim criterion value.
# Written 17/7/08 Alicia Oshlack
# Last revised 2 Oct 2008, Gordon Smyth
{
ym <- as.matrix(y)
if(anyNA(ym)) stop("NAs not allowed")
narrays <- ncol(ym)
rm(ym)
nmodels <- length(designlist)
models <- names(designlist)
if(is.null(models)) models <- as.character(1:nmodels)
if(df.prior>0 & is.null(s2.prior)) stop("s2.prior must be set")
if(df.prior==0) s2.prior <- 0
criterion <- match.arg(criterion,c("aic","bic","mallowscp"))
if(criterion=="mallowscp") {
if(is.null(s2.true)) stop("Need s2.true values")
for(i in 1:nmodels) {
fit <- lmFit(y, designlist[[i]], ...)
npar <- narrays-fit$df.residual[1]
if(i==1) {
IC <- matrix(nrow=nrow(fit),ncol=nmodels,dimnames=list(Probes=rownames(fit),Models=models))
if(length(s2.true)!=nrow(fit) && length(s2.true)!=1) stop("s2.true wrong length")
}
IC[,i] <- fit$df.residual*fit$sigma^2/s2.true+npar*2-narrays
}
} else {
ntotal <- df.prior+narrays
penalty <- switch(criterion,bic=log(narrays),aic=2)
for(i in 1:nmodels) {
fit <- lmFit(y, designlist[[i]], ...)
npar <- narrays-fit$df.residual[1]+1
s2.post <- (df.prior*s2.prior+fit$df.residual*fit$sigma^2)/ntotal
if(i==1) IC <- matrix(nrow=nrow(fit),ncol=nmodels,dimnames=list(Probes=rownames(fit),Models=models))
IC[,i] <- ntotal*log(s2.post)+npar*penalty
}
}
pref <- factor(apply(IC,1,which.min),levels=1:nmodels,labels=models)
list(IC=IC,pref=pref,criterion=criterion)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.