Description Usage Details Author(s) Examples
Internal maanova functions. These are generally not to be called by the user.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | JS(X, var)
JSshrinker(X, df, meanlog, varlog)
buildtree(ct, binstr, depth, parent, idx.node, idx.leave)
calPval(fstar, fobs, pool)
calVolcanoXval(matestobj)
caldf(model, term)
check.confounding(model, term1, term2)
checkContrast(model, term, Contrast)
cluster2num(clust)
consensus.hc(macluster, level, draw)
consensus.kmean(macluster, level, draw)
dist.cor(x)
findgroup(varid, ndye)
getPval.volcano(matestobj, method, idx)
glowess(object, method, f, iter, degree, draw)
intprod(terms, intterm)
linlog(object, cg, cr, draw)
linlog.engine(data, cutoff)
linlogshift(object, lolim, uplim, cg, cr, n.bin, draw)
locateTerm(labels, term)
make.ratio(object, norm.std=TRUE)
makeAB(ct, coord, treeidx, startx, maxdepth)
makeCompMat(n)
makeD(s20, dimZ)
makeDesign(design)
makeHq(s20, y, X, Z, Zi, ZiZi, dim, b, method)
makeShuffleGroup(sample.mtx, ndye, narray)
makeZiZi(Z, dimZ)
makelevel(model, term)
matest.engine(anovaobj, term, mv, test.method, Contrast,
is.ftest, partC, verbose=FALSE)
matest.perm(n.perm, FobsObj, data, model, term, Contrast,
mv, is.ftest, partC, MME.method, test.method,
shuffle.method, pool.pval, ngenes)
meanvarlog(df)
## S3 method for class 'consensus.hc'
plot(x, title, ...)
## S3 method for class 'consensus.kmean'
plot(x, ...)
## S3 method for class 'madata'
print(x, ...)
## S3 method for class 'summary.mamodel'
print(x, ...)
ratioVarplot(logsum, logdiff, n)
rlowess(object, method, grow, gcol, f, iter, degree, draw)
shift(object, lolim, uplim, draw)
shuffle.maanova(data, model, term)
solveMME(s20, dim, XX, XZ, ZZ, a)
## S3 method for class 'madata'
summary(object, ...)
## S3 method for class 'mamodel'
summary(object, ...)
volcano.ftest(matestobj, threshold, method, title,highlight.flag)
volcano.ttest(matestobj, threshold, method, title,highlight.flag,
onScreen)
matsort(mat, index=1)
repmat(mat, n.row, n.col, ...)
zeros(dim)
ones(dim)
blkdiag(...)
rowmax(x)
rowmin(x)
colmax(x)
colmin(x)
sumrow(x)
matrank(X)
norm(X)
mixed(y, X, Z, XX, XZ, ZZ, Zi, ZiZi, dimZ, s20, method =
c("noest", "MINQE-I", "MINQE-UI", "ML", "REML"),
maxiter = 100)
parseformula(formula, random, covariate)
makeContrast(model, term)
pinv(X, tol)
fdr(p, method = c("stepup", "adaptive", "stepdown", 'jsFDR'))
|
Some funtion descriptions are:
matsort: Sort matrix in ascending order along specified dimension
repmat: Replicate and tile an array
zeros: Create an array with all zeros
ones: Create an array with all ones
blkdiag: Block diagonal concatenation of input arguments
num2yn: convert a logical value to string "Yes" or "No"
rowmax, rowmin, colmax, colmin: find the maximum/minimum value for row/columns
sumrow: calculate the sum of rows for a given matrix
matrank: calculate the rank of a matrix
norm: calculate matrix or vector norm, working only for vector now
mixed: engine function to solve Mixed Model Equations using EM algorithm
parseformula: parse input formula. This is used for mixed effect model
makeDesign: function to make a integer list from input design object
intpord: function to make the design matrix for interaction terms it's working for two way interaction only
makeContrast: function to make the contrast matrix given model and the term to be tested number of levels
pinv: calculate the pseudo inverse for a singular matrix. Note that I was using ginv function in MASS but it is not robust, e.g., sometimes have no result. That's because the engine function dsvdc set the maximum number of iteration to be 30, which is not enough in some case. I use La.svd instead of svd in my function. I don't want to spend time on it so it doesn't support complex number
fdr: function to calculate the adjusted P values for FDR control.
Hao Wu; Hyuna Yang, hyuna.yang@jax.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # for matsort
a<-matrix(c(1,6,4,3,5,2),2,3)
matsort(a,1)
matsort(a,2)
# for ones and zeros
ones(c(2,2))
zeros(c(2,3,2))
# for repmat
a<-c(1,2)
repmat(a,2,1)
a<-matrix(1:4,2,2)
repmat(a,1,2)
# for blkdiag
a<-matrix(1:4,2,2)
b<-matrix(3:6,2,2)
blkdiag(a,b)
blkdiag(a,b,c(1,2))
# others examples are omitted
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.