Nothing
## ----installBioConductor, eval = FALSE----------------------------------------
# library(BiocManager)
# BiocManager::install("reconsi")
## ----installAndLoadGitHub, eval = FALSE---------------------------------------
# library(devtools)
# install_github("CenterForStatistics-UGent/reconsi")
## ----loadReconsi--------------------------------------------------------------
suppressPackageStartupMessages(library(reconsi))
cat("reconsi package version", as.character(packageVersion("reconsi")), "\n")
## ----syntData-----------------------------------------------------------------
#Create some synthetic data with 90% true null hypothesis
p = 200; n = 50
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
#Provide just the matrix and grouping factor, and test using the collapsed null
fdrRes = reconsi(mat, x)
#The estimated tail-area false discovery rates.
estFdr = fdrRes$Fdr
## ----p0-----------------------------------------------------------------------
fdrRes$p0
## ----plotNull-----------------------------------------------------------------
plotNull(fdrRes)
## ----plotApproxCovar----------------------------------------------------------
plotApproxCovar(fdrRes)
## ----customFunction-----------------------------------------------------------
#With a custom function, here linera regression
fdrResLm = reconsi(mat, x, B = 5e1,
test = function(x, y){
fit = lm(y~x)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q){pt(q = q[1], df = q[2])})
## ----customFunction2----------------------------------------------------------
#3 groups
p = 100; n = 60
x = rep(c(0,1,2), each = n/3)
mu0 = 5
mat = cbind(
matrix(rnorm(n*p/10, mean = mu0+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = mu0),n,p*9/10) #Non DA
)
#Provide an additional covariate through the 'argList' argument
z = rpois(n , lambda = 2)
fdrResLmZ = reconsi(mat, x, B = 5e1,
test = function(x, y, z){
fit = lm(y~x+z)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q){pt(q = q[1], df = q[2])},
argList = list(z = z))
## ----kruskal------------------------------------------------------------------
fdrResKruskal = reconsi(mat, x, B = 5e1,
test = function(x, y){kruskal.test(y~x)$statistic}, zValues = FALSE)
## ----resamZvals---------------------------------------------------------------
fdrResKruskalPerm = reconsi(mat, x, B = 5e1,
test = function(x, y){
kruskal.test(y~x)$statistic}, resamZvals = TRUE)
## ----bootstrap----------------------------------------------------------------
fdrResBootstrap = reconsi(Y = mat, B = 5e1, test = function(y, x, mu){
testRes = t.test(y, mu = mu)
c(testRes$statistic, testRes$parameter)}, argList = list(mu = mu0),
distFun = function(q){pt(q = q[1],
df = q[2])})
## ----Vandeputte---------------------------------------------------------------
#The grouping and flow cytometry variables are present in the phyloseq object, they only need to be called by their name.
testVanDePutte = testDAA(Vandeputte, groupName = "Health.status", FCname = "absCountFrozen", B = 1e2L)
## ----vandeputteFdr------------------------------------------------------------
FdrVDP = testVanDePutte$Fdr
quantile(FdrVDP)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.