tests/testthat/test_combat_sim.R

library(sva)
library(testthat)
context("ComBat test on simulated data")


### Run ComBat on a simple simulated dataset
test_that("check ComBat output with several different parameters on simulated genes",{
  # generate simulated data 
  nb <- 3  # number of batches
  nw <- 5  # samples within batch
  n <- nw*nb # total number of sampes
  batch <- rep(1:nb, each = nw) # batch variable for ComBat
  set.seed(0)
  treat <- rbinom(n,1,c(.5,.5)) # treatment variable--generated at random 
  beta <- 1:(nb+1) # batch effects + treatment effect (last one)
  X <- model.matrix(~-1+as.factor(batch)+treat)
  genes <- 100
  set.seed(0)
  y <- matrix(rnorm(n*genes,X%*%beta),nrow=genes, byrow=TRUE) # generate data
  
  ### Test ComBat with different parameters:
  # without covariates 
  batch_only <- ComBat(y,batch)
  gene1_batch_only <- c(6.5275687,1.9434116,3.3016615,6.5353399,5.8317968,-0.3314552,3.9485709,4.5368716,4.8050618,7.0422784,4.2176928,2.6528653,2.3037212,7.1688336,3.1533711)
  expect_equal(as.numeric(batch_only[1,]),gene1_batch_only)
  
  # without covariates non-parametric
  batch_only_non <- ComBat(y,batch,par.prior=FALSE)
  gene1_batch_only_non <- c(6.5041159,1.9798940,3.3203856,6.5117856,5.8174409,-0.2101846,3.9735703,4.5486383,4.8107961,6.9976908,4.1925793,2.6502177,2.3060862,7.1013511,3.1435378)
  expect_equal(as.numeric(batch_only_non[1,]),gene1_batch_only_non)
  
  # with covariates 
  batch_treat <- ComBat(y,batch,treat,par.prior=TRUE)
  gene1_batch_treat <- c(6.9550540,1.3750580,3.0128757,6.9644248,6.1160719,0.8808531,5.5188802,6.0339045,6.2686899,8.2272474,2.8499106,1.3062056,0.9617743,5.8187037,1.7999553)
  expect_equal(as.numeric(batch_treat[1,]),gene1_batch_treat)
  
  # with covariates non-parametric
  batch_treat_non <- ComBat(y,batch,treat,par.prior=FALSE)
  gene1_batch_treat_non <- c(6.9621810,1.4557761, 2.9477604, 6.9707174, 6.1979029, 0.9018672, 5.5466543, 6.0315322, 6.2525748, 8.0964907, 2.7563817, 1.3122575, 0.9900446, 5.8403030, 1.7741566)
  expect_equal(as.numeric(batch_treat_non[1,]),gene1_batch_treat_non)
  
  # with covariates missing data
  ## introduce missing values 10%
  set.seed(1)
  m <-  matrix(rbinom(n*genes,1,.9),nrow=genes, byrow=TRUE)
  ymis <- y
  ymis[m==0] <- NA
  batch_treat_mis <- ComBat(ymis,batch,treat)
  gene1_batch_treat_mis <- c(7.0249052, 1.4302766, 3.0979753, NA, 6.1706164, 0.7848869, NA, 5.9650280, 6.2100799, 8.2542787, 2.8907924, 1.3319739, 0.9841704, 5.8422657, 1.8305576)
  expect_equal(as.numeric(batch_treat_mis[1,]),gene1_batch_treat_mis)
  
  # mean only ComBat
  batch_treat_mean_only <- ComBat(y,batch,treat,mean.only=TRUE)
  gene1_batch_treat_mean_only <- c(7.2030495, 1.6138619, 3.2698945, 7.2125245, 6.3547367, 0.5918231, 5.2032061, 5.8370527, 6.1260060, 8.5364265, 2.7343902, 1.1717875, 0.8231397, 5.6813352, 1.6715816)
  expect_equal(as.numeric(batch_treat_mean_only[1,]),gene1_batch_treat_mean_only)
  
  # mean only ComBat non parametric
  batch_treat_mean_only_non <- ComBat(y,batch,treat,par.prior=FALSE, mean.only=TRUE)
  gene1_batch_treat_mean_only_non <- c(6.9822181, 1.3930305, 3.0490631, 6.9916932, 6.1339053, 0.7107136, 5.3220966, 5.9559432, 6.2448965, 8.6553171, 2.8420714, 1.2794687, 0.9308209, 5.7890163, 1.7792628)
  expect_equal(as.numeric(batch_treat_mean_only_non[1,]),gene1_batch_treat_mean_only_non)
  
  # detect a single sample in a batch--automatically use mean only ComBat
  y_sub <- y[,-c(2:5)]; treat_sub <- treat[-c(2:5)]; batch_sub <- batch[-c(2:5)]
  batch_treat_mean_only <- ComBat(y_sub,batch_sub,treat_sub,mean.only=FALSE)
  gene1_batch_treat_mean_only <- c(7.141462, 1.001405, 5.612788, 6.246634, 6.535587, 8.946008, 2.961106, 1.398503, 1.049856, 5.908051, 1.898298)
  expect_equal(round(as.numeric(batch_treat_mean_only[1,]),6),gene1_batch_treat_mean_only)
  
  ############## check if ref batch is changed in all situations above
  # stats of batch info
  batch <- as.factor(batch)
  n.batch <- nlevels(batch)
  batches <- list()
  for (i in 1:n.batch){
    batches[[i]] <- which(batch == levels(batch)[i])
  } # list of samples in each batch  
  n.batches <- sapply(batches, length) 
  
  # without covariates 
  #batch_only <- ComBat(y,batch, ref.batch=3)
  #refdat_prev <- y[,batches[[3]]]
  #refdat_adjust <- batch_only[,batches[[3]]]
  #expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
  # without covariates non-parametric
  #batch_only_non <- ComBat(y,batch,par.prior=FALSE,ref.batch=2)
  #refdat_prev <- y[,batches[[2]]]
  #refdat_adjust <- batch_only_non[,batches[[2]]]
  #expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
  # with covariates 
  batch_treat <- ComBat(y,batch,par.prior=FALSE,ref.batch=1)
  refdat_prev <- y[,batches[[1]]]
  refdat_adjust <- batch_treat[,batches[[1]]]
  expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
  # with covariates non-parametric
  #batch_treat_non <- ComBat(y,batch,treat,par.prior=FALSE,ref.batch=1)
  #refdat_prev <- y[,batches[[1]]]
  #refdat_adjust <- batch_treat_non[,batches[[1]]]
  #expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
  # with covariates missing data
  ## introduce missing values 10%
  #set.seed(1)
  #m <-  matrix(rbinom(n*genes,1,.9),nrow=genes, byrow=TRUE)
  #ymis <- y
  #ymis[m==0] <- NA
  #batch_treat_mis <- ComBat(ymis,batch,treat,ref.batch=2)
  #refdat_prev <- ymis[,batches[[2]]]
  #refdat_adjust <- batch_treat_mis[,batches[[2]]]
  #expect_equal(sum((refdat_prev==refdat_adjust)[m[,batches[[2]]]!=0]),
  #             dim(refdat_prev)[1]*dim(refdat_prev)[2]-sum(m[,batches[[2]]]==0))
  
  # mean only ComBat
  #batch_treat_mean_only <- ComBat(y,batch,treat,mean.only=TRUE,ref.batch=1)
  #refdat_prev <- y[,batches[[1]]]
  #refdat_adjust <- batch_treat[,batches[[1]]]
  #expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
  # detect a single sample in a batch--automatically use mean only ComBat
  y_sub <- y[,-c(2:5)]; treat_sub <- treat[-c(2:5)]; batch_sub <- batch[-c(2:5)]
  n.batch <- nlevels(batch_sub)
  batches_sub <- list()
  for (i in 1:n.batch){
    batches_sub[[i]] <- which(batch_sub == levels(batch_sub)[i])
  } # list of samples in each batch  
  n.batches_sub <- sapply(batches_sub, length) 
  batch_treat_mean_only <- ComBat(y_sub,batch_sub,treat_sub,mean.only=FALSE, ref.batch=2)
  refdat_prev <- y_sub[,batches_sub[[2]]]
  refdat_adjust <- batch_treat_mean_only[,batches_sub[[2]]]
  expect_equal(sum(refdat_prev==refdat_adjust),dim(refdat_prev)[1]*dim(refdat_prev)[2])
  
})

Try the sva package in your browser

Any scripts or data that you put into this service are public.

sva documentation built on Nov. 8, 2020, 8:16 p.m.