Nothing
library(knitr) knitr::opts_chunk$set(cache = TRUE, warning = FALSE, message = FALSE, cache.lazy = FALSE) library(dplyr) library(tidyr) library(tibble) library(magrittr) library(ggplot2) library(ggrepel) library(tidybulk) my_theme = theme_bw() + theme( panel.border = element_blank(), axis.line = element_line(), panel.grid.major = element_line(size = 0.2), panel.grid.minor = element_line(size = 0.1), text = element_text(size=12), legend.position="bottom", aspect.ratio=1, strip.background = element_blank(), axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)), axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)) )
In this article we show some examples of the differences in coding between tidybulk/tidyverse and base R. We noted a decrease > 10x of assignments and a decrease of > 2x of line numbers.
tidybulk tibble.tt = counts_mini %>% tidybulk(sample, transcript, count)
transcriptscountsvariable transcriptsWe may want to identify and filter variable transcripts.
dimensionstt.norm.PCA = tt.norm %>% reduce_dimensions(method="PCA", .dims = 2)
count_m_log = log(count_m + 1) pc = count_m_log %>% prcomp(scale = TRUE) variance = pc$sdev^2 variance = (variance / sum(variance))[1:6] pc$cell_type = counts[ match(counts$sample, rownames(pc)), "Cell type" ]
tt.norm.tSNE = breast_tcga_mini %>% tidybulk( sample, ens, count_scaled) %>% identify_abundant() %>% reduce_dimensions( method = "tSNE", perplexity=10, pca_scale =TRUE )
count_m_log = log(count_m + 1) tsne = Rtsne::Rtsne( t(count_m_log), perplexity=10, pca_scale =TRUE )$Y tsne$cell_type = tidybulk::counts[ match(tidybulk::counts$sample, rownames(tsne)), "Cell type" ]
dimensionsdifferential abundancecountsCell type compositionsamplesredundant transcriptsheatmapdensity plotsessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.