Description Usage Arguments Value Examples
remove_redundancy() takes as input a 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> | for correlation method or | <DIMENSION 1> | <DIMENSION 2> | <...> | for reduced_dimensions method, and returns a 'tbl' with dropped elements (e.g., samples).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column,
Dim_b_column
)
## S4 method for signature 'spec_tbl_df'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column = NULL,
Dim_b_column = NULL
)
## S4 method for signature 'tbl_df'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column = NULL,
Dim_b_column = NULL
)
## S4 method for signature 'tidybulk'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column = NULL,
Dim_b_column = NULL
)
## S4 method for signature 'SummarizedExperiment'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column = NULL,
Dim_b_column = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
log_transform = FALSE,
Dim_a_column = NULL,
Dim_b_column = NULL
)
|
.data |
A 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> | |
.element |
The name of the element column (normally samples). |
.feature |
The name of the feature column (normally transcripts/genes) |
.abundance |
The name of the column including the numerical value the clustering is based on (normally transcript abundance) |
method |
A character string. The cluster algorithm to use, ay the moment k-means is the only algorithm included. |
of_samples |
A boolean. In case the input is a tidybulk object, it indicates Whether the element column will be sample or transcript column |
correlation_threshold |
A real number between 0 and 1. For correlation based calculation. |
top |
An integer. How many top genes to select for correlation based method |
log_transform |
A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data) |
Dim_a_column |
A character string. For reduced_dimension based calculation. The column of one principal component |
Dim_b_column |
A character string. For reduced_dimension based calculation. The column of another principal component |
A tbl object with with dropped redundant elements (e.g., samples).
A tbl object with with dropped redundant elements (e.g., samples).
A tbl object with with dropped redundant elements (e.g., samples).
A tbl object with with dropped redundant elements (e.g., samples).
A 'SummarizedExperiment' object
A 'SummarizedExperiment' object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | tidybulk::counts_mini %>%
tidybulk(sample, transcript, count) %>%
identify_abundant() %>%
remove_redundancy(
.element = sample,
.feature = transcript,
.abundance = count,
method = "correlation"
)
counts.MDS =
tidybulk::counts_mini %>%
tidybulk(sample, transcript, count) %>%
identify_abundant() %>%
reduce_dimensions( method="MDS", .dims = 3)
remove_redundancy(
counts.MDS,
Dim_a_column = `Dim1`,
Dim_b_column = `Dim2`,
.element = sample,
method = "reduced_dimensions"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.