Nothing
## ---- echo=FALSE, include=FALSE-----------------------------------------------
library(knitr)
#library(kableExtra)
knitr::opts_chunk$set(cache = TRUE, warning = FALSE,
message = FALSE, cache.lazy = FALSE)
#options(width = 120)
options(pillar.min_title_chars = Inf)
library(magrittr)
library(tibble)
library(dplyr)
library(magrittr)
library(tidyr)
library(ggplot2)
library(rlang)
library(purrr)
library(tidybulk)
my_theme =
theme_bw() +
theme(
panel.border = element_blank(),
axis.line = element_line(),
panel.grid.major = element_line(size = 0.2),
panel.grid.minor = element_line(size = 0.1),
text = element_text(size=12),
legend.position="bottom",
aspect.ratio=1,
strip.background = element_blank(),
axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10))
)
## ---- eval=FALSE,echo=FALSE, include=FALSE------------------------------------
# load("../dev/counts_cell_type.rda")
# options(tidybulk_do_validate = FALSE)
## ---- eval = FALSE------------------------------------------------------------
# counts_scaled =
# counts_cell_type %>%
#
# # Convert to tidybulk tibble
# tidybulk(sample, symbol, count) %>%
#
# # Preprocess and scale the data
# aggregate_duplicates() %>%
# identify_abundant() %>%
# scale_abundance() %>%
#
# # Impute missing sample-transcript pairs
# impute_missing_abundance(~cell_type) %>%
# mutate(.abundant = TRUE)
#
## ---- eval = FALSE------------------------------------------------------------
# counts_non_red =
# counts_scaled %>%
#
# # Perform operation for each cell type
# nest(data = -cell_type) %>%
# mutate(data = map(
# data,
# ~ .x %>%
# remove_redundancy(
# method="correlation",
# correlation_threshold = 0.99,
# top=1000
# )
# )) %>%
# unnest(data)
#
#
## ---- eval = FALSE------------------------------------------------------------
# # Select genes that are in at least one sample for all cell types
# gene_all =
# counts_non_red %>%
# distinct(symbol, cell_type) %>%
# count(symbol) %>%
# filter(n == max(n))
#
# # filter dataset and impute missing transcripts-samples pairs
# counts_non_red_common =
# counts_non_red %>%
# inner_join(gene_all)
#
#
#
## ---- eval = FALSE------------------------------------------------------------
# counts_non_red_common %>%
# reduce_dimensions(method = "tSNE", action="get") %>%
# ggplot(aes(x = `tSNE1`, y = `tSNE2`, color = cell_type)) +
# geom_point(size =2)
#
## ---- echo=F------------------------------------------------------------------
# saveRDS(counts_non_red_common, "dev/counts_non_red_common.rds", compress = "xz")
tidybulk::vignette_manuscript_signature_tsne %>%
ggplot(aes(x = `tSNE1`, y = `tSNE2`, color = cell_type)) +
geom_point(size =2)
## ---- eval = FALSE------------------------------------------------------------
# markers =
#
# # Define all-versus-all cell type permutations
# counts_non_red_common %>%
# distinct(cell_type) %>%
# pull(cell_type) %>%
# gtools::permutations(n = length(.), r = 2, v = .) %>%
# as_tibble() %>%
# setNames(c("cell_type1", "cell_type2")) %>%
# mutate(contrast = sprintf("cell_type%s - cell_type%s", cell_type1, cell_type2)) %>%
#
# # Rank marker genes
# mutate(de =
# pmap(
# list(cell_type1, cell_type2, contrast),
# ~ counts_non_red_common %>%
# filter(cell_type %in% c(..1, ..2)) %>%
# test_differential_abundance(~ 0 + cell_type, .contrasts = ..3, fill_missing_values = TRUE, action="get", omit_contrast_in_colnames = T) %>%
# filter(logFC > 0) %>%
# arrange(FDR) %>%
# rowid_to_column(var = "i")
# )) %>%
# unnest(de)
#
## ---- eval = FALSE------------------------------------------------------------
# markers %>%
#
# # Filter best markers for monocytes
# filter(cell_type1=="monocyte" & i==1) %>%
#
# # Prettify contrasts for plotting
# unite(pair, c("cell_type1", "cell_type2"), remove = FALSE, sep = "\n") %>%
#
# # Reshape
# gather(which, cell_type, cell_type1, cell_type2) %>%
# distinct(pair, symbol, which, cell_type) %>%
#
# # Attach counts
# left_join(counts_non_red) %>%
#
# # Plot
# ggplot(aes(y = count_scaled + 1, x = cell_type, fill = cell_type)) +
# geom_boxplot() +
# facet_wrap(~pair+ symbol, scales ="free_x", nrow = 2) +
# scale_y_log10()
#
#
## ---- echo=F------------------------------------------------------------------
# saveRDS(markers, "dev/vignette_markers.rds", compress = "xz")
tidybulk::vignette_manuscript_signature_boxplot %>%
# Plot
ggplot(aes(y = count_scaled + 1, x = cell_type, fill = cell_type)) +
geom_boxplot() +
facet_wrap(~pair+ symbol, scales ="free_x", nrow = 2) +
scale_y_log10()
## ---- eval = FALSE------------------------------------------------------------
# markers %>%
#
# # Select first 5 markers from each cell-type pair
# filter(i <= 5) %>%
# unite(pair, c("cell_type1", "cell_type2"), remove = FALSE, sep = "\n") %>%
#
# # Reshape
# gather(which, cell_type, cell_type1, cell_type2) %>%
# distinct(symbol) %>%
#
# # Attach counts
# left_join(counts_non_red, by = c("symbol")) %>%
#
# # Plot
# reduce_dimensions(sample, symbol, count_scaled, method = "tSNE", action="get") %>%
# pivot_sample(sample) %>%
# ggplot(aes(x = `tSNE1`, y = `tSNE2`, color = cell_type)) +
# geom_point(size =2)
#
## ---- echo=F------------------------------------------------------------------
tidybulk::vignette_manuscript_signature_tsne2 %>%
pivot_sample(sample) %>%
ggplot(aes(x = `tSNE1`, y = `tSNE2`, color = cell_type)) +
geom_point(size =2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.