auc | R Documentation |
This function computes the numeric value of area under the ROC curve (AUC) specifically for graph structure learning.
auc( pred, actual, cut = 200, calibrate = TRUE )
pred |
adjacency matrix corresponding to an estimated graph.
It can be an object with |
actual |
adjacency matrix corresponding to the actual graph structure in which |
cut |
number of cut points. |
calibrate |
If |
The numeric AUC value
Reza Mohammadi a.mohammadi@uva.nl; Lucas Vogels l.f.o.vogels@uva.nl
Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.patrec.2005.10.010")}
Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/1471-2105-12-77")}.
plotroc
, pROC::plot.roc()
, pROC::auc()
, pROC::print.roc()
, bdgraph
, bdgraph.mpl
, compare
## Not run:
set.seed( 5 )
# Generating multivariate normal data from a 'scale-free' graph
data.sim = bdgraph.sim( n = 200, p = 15, graph = "scale-free", vis = TRUE )
# Running BDMCMC algorithm
sample.bdmcmc = bdgraph( data = data.sim, algorithm = "bdmcmc", iter = 10000 )
BDgraph::auc( pred = sample.bdmcmc, actual = data.sim, calibrate = TRUE )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.