| Discrete Weibull | R Documentation |
Density, distribution function, quantile function and random generation for the discrete Weibull distribution (type I) with parameters q and \beta.
ddweibull(x, q = exp(-1), beta = 1, zero = TRUE)
pdweibull(x, q = exp(-1), beta = 1, zero = TRUE)
qdweibull(p, q = exp(-1), beta = 1, zero = TRUE)
rdweibull(n, q = exp(-1), beta = 1, zero = TRUE)
x |
vector of quantiles. |
p |
vector of probabilities. |
q, beta |
shape and scale parameters, the latter defaulting to 1. |
zero |
logical; if |
n |
number of observations. If |
The discrete Weibull distribution has density given by
f(x) = q^{x^\beta} - q^{(x+1)^\beta}, x = 0, 1, 2, \ldots
For the case zero = FALSE:
f(x) = q^{(x-1)^\beta} - q^{x^\beta}, x = 1, 2, \ldots
Cumulative distribution function
F(x) = 1-q^{(x+1)^\beta}
For the case zero = FALSE, x+1 should replaced by x.
ddweibull gives the density, pdweibull gives the distribution function, qdweibull gives the quantile function, and rdweibull generates random values.
Reza Mohammadi a.mohammadi@uva.nl, Pariya Behrouzi, Veronica Vinciotti
Nakagawa, T. and Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, R-24, 300-301, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/TR.1975.5214915")}
dweibull, bdw.reg, bdgraph.dw
n = 1000
q = 0.4
beta = 0.8
set.seed(7)
rdw = rdweibull(n = n, q = q, beta = beta)
plot(prop.table(table(rdw)), type = "h", col = "gray50")
x = 0:max(rdw)
lines(x, ddweibull(x = x, q = q, beta = beta), type = "o", col = "blue", lwd = 2)
hist(pdweibull(x = rdw, q = q, beta = beta))
plot(ecdf(rdw))
lines(x, pdweibull(x, q = q, beta = beta), col = "blue", lwd = 2, type = "s")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.