gnorm | R Documentation |
Calculates log of the normalizing constant of G-Wishart distribution based on the Monte Carlo method, developed by Atay-Kayis and Massam (2005).
gnorm( adj, b = 3, D = diag( ncol( adj ) ), iter = 100 )
adj |
adjacency matrix corresponding to the graph structure. It is an upper triangular matrix in which
|
b |
degree of freedom for G-Wishart distribution, |
D |
positive definite |
iter |
number of iteration for the Monte Carlo approximation. |
Log of the normalizing constant approximation using Monte Carlo method for a G-Wishart distribution, K \sim W_G(b, D)
, with density:
Pr(K) = \frac{1}{I(b, D)} |K| ^ {(b - 2) / 2} \exp \left\{- \frac{1}{2} \mbox{trace}(K \times D)\right\}.
Log of the normalizing constant of G-Wishart distribution.
Reza Mohammadi a.mohammadi@uva.nl
Atay-Kayis, A. and Massam, H. (2005). A monte carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models, Biometrika, 92(2):317-335, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/biomet/92.2.317")}
Mohammadi, R., Massam, H. and Letac, G. (2023). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")}
Uhler, C., et al (2018) Exact formulas for the normalizing constants of Wishart distributions for graphical models, The Annals of Statistics 46(1):90-118, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/17-AOS1543")}
rgwish
, rwish
## Not run:
# adj: adjacency matrix of graph with 3 nodes and 2 links
adj <- matrix( c( 0, 0, 1,
0, 0, 1,
0, 0, 0 ), 3, 3, byrow = TRUE )
gnorm( adj, b = 3, D = diag( 3 ) )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.