Plot FROC curves based on two parameters a and b.
1 2 3 4 5 6 7 8 9 10 | ggplotFROC.EAP(
a,
b,
mesh.for.drawing.curve = 10000,
upper_x = 1,
upper_y = 1,
lower_y = 0,
dataList,
StanS4class
)
|
a |
An arbitrary real number.
It is no need to require any assumption,
but I use such as | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b |
An arbitrary positive real number.
I use such as | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
mesh.for.drawing.curve |
A positive large integer, indicating number of dots drawing the curves, Default =10000. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
upper_x |
A positive real number, indicating the frame size of drawing picture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
upper_y |
A positive real number, indicating the frame size of drawing picture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
lower_y |
A positive real number, indicating the frame size of drawing picture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
dataList |
A list, specifying an FROC data to be fitted a model. It consists of data of numbers of TPs, FPs, lesions, images. .In addition, if in case of mutiple readers or mutiple modalities, then modaity ID and reader ID are included also. The For the single reader and a single modality data, the
Using this object To make this R object
Before fitting a model,
we can confirm our dataset is correctly formulated
by using the function —————————————————————————————- A Single reader and a single modality (SRSC) case. —————————————————————————————- In a single reader and a single modality case (srsc),
The detail of these dataset, see the datasets endowed with this package.
'Note that the maximal number of confidence level, denoted by data Format: A single reader and a single modality case ——————————————————————————————————
————————————————————————————————— * false alarms = False Positives = FP * hits = True Positives = TP Note that in FROC data, all confidence level means present (diseased, lesion) case only, no confidence level indicating absent. Since each reader marks his suspicious location only if he thinks lesions are present, and marked positions generates the hits or false alarms, thus each confidence level represents that lesion is present. In the absent case, reader does not mark any locations and hence, the absent confidence level does not relate this dataset. So, if reader think it is no lesion, then in such case confidence level is not needed. Note that the first column of confidence level vector ————————————————————————————— Multiple readers and multiple modalities case, i.e., MRMC case ————————————————————————————— In case of multiple readers and multiple modalities, i.e., MRMC case,
in order to apply the function
Note that the maximal number of confidence level (denoted by the function Example data. Multiple readers and multiple modalities ( i.e., MRMC) —————————————————————————————————
————————————————————————————————— * false alarms = False Positives = FP * hits = True Positives = TP | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
StanS4class |
An S4 object of class To be passed to |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.