Nothing
#' \code{lqmm} fits linear quantile mixed model
#'
#' Function using 'JAGS' software to estimate the linear quantile mixed model assuming asymmetric Laplace
#' distribution for residual error.
#'
#' @param formFixed formula for fixed part of longitudinal submodel with response variable
#' @param formRandom formula for random part of longitudinal submodel without response variable
#' @param formGroup formula specifying the cluster variable (e.g. = ~ subject)
#' @param data dataset of observed variables
#' @param tau the quantile(s) to be estimated. This must be a number between 0 and 1, otherwise the execution is stopped. If more than one quantile is specified, rounding off to the 4th decimal must give non–duplicated values of \code{tau}, otherwise the execution is stopped.
#' @param RE_ind Boolean denoting if the random effects are assumed independent ; default is \code{FALSE}
#' @param n.chains the number of parallel chains for the model; default is 1.
#' @param n.iter integer specifying the total number of iterations; default is 10000
#' @param n.burnin integer specifying how many of \code{n.iter} to discard as burn-in ; default is 5000
#' @param n.thin integer specifying the thinning of the chains; default is 1
#' @param n.adapt integer specifying the number of iterations to use for adaptation; default is \code{NULL}
#' @param precision variance by default for vague prior distribution
#' @param save_jagsUI If \code{TRUE} (by default), the output of \code{jagsUI} package is returned by the function. Warning, if \code{TRUE}, the output can be large.
#' @param parallel see \code{jagsUI::jags()} function
#'
#'
#' @return A \code{Blqmm} object is a list with the following elements:
#' \describe{
#' \item{\code{mean}}{list of posterior mean for each parameter}
#' \item{\code{median}}{list of posterior median for each parameter}
#' \item{\code{modes}}{list of posterior mode for each parameter}
#' \item{\code{StErr}}{list of standard error for each parameter}
#' \item{\code{StDev}}{list of standard deviation for each parameter}
#' \item{\code{ICs}}{list of the credibility interval at 0.95 for each parameters excepted for covariance parameters in covariance matrix of random effects. Otherwise, use save_jagsUI=TRUE to have the associated quantiles.}
#' \item{\code{data}}{data included in argument}
#' \item{\code{sims.list}}{list of the MCMC chains of the parameters and random effects}
#' \item{\code{control}}{list of arguments giving details about the estimation}
#' \item{\code{random_effect}}{list for each quantile including both posterior mean and posterior standard deviation of subject-specific random effects}
#' \item{\code{out_jagsUI}}{only if \code{save_jagsUI=TRUE} in argument: list including posterior mean, median, quantiles (2.5%, 25%, 50%, 75%, 97.5%), standart deviation for each parameter and each random effect.
#' Moreover, this list also returns the MCMC draws, the Gelman and Rubin diagnostics (see output of jagsUI objects)}
#' }
#'
#' @author Antoine Barbieri
#'
#' @import lqmm jagsUI
#'
#' @references Marco Geraci and Matteo Bottai (2014).
#' \emph{Linear quantile mixed models}.
#' Statistics and Computing, 24(3):461-479. doi: 10.1007/s11222-013-9381-9.
#'
#' @export
#'
#' @examples
#'
#' \donttest{
#' #---- Use dataLong dataset
#' data(dataLong)
#'
#' #---- Fit regression model for the first quartile
#' lqmm_075 <- lqmm(formFixed = y ~ visit,
#' formRandom = ~ visit,
#' formGroup = ~ ID,
#' data = dataLong,
#' tau = 0.75,
#' n.iter = 10000,
#' n.burnin = 1000)
#'
#' #---- Get the posterior means
#' lqmm_075$mean
#'
#' #---- Visualize the trace for beta parameters
#' jagsUI::traceplot(lqmm_075$out_jagsUI, parameters = "beta")
#'
#' #---- Summary of output
#' summary(lqmm_075)
#' }
#'
lqmm <- function(formFixed,
formRandom,
formGroup,
data,
tau,
RE_ind = FALSE,
n.chains = 3,
n.iter = 10000,
n.burnin = 5000,
n.thin = 1,
n.adapt = NULL,
precision = 10,
save_jagsUI = TRUE,
parallel = FALSE){
#-- data management
data_long <- data[unique(c(all.vars(formGroup),all.vars(formFixed),all.vars(formRandom)))]
y <- data_long[all.vars(formFixed)][, 1]
mfX <- stats::model.frame(formFixed, data = data_long)
X <- stats::model.matrix(formFixed, mfX)
mfU <- stats::model.frame(formRandom, data = data_long)
U <- stats::model.matrix(formRandom, mfU)
id <- as.integer(data_long[all.vars(formGroup)][,1])
if(!("id" %in% colnames(data_long)))
data_long <- cbind(data_long, id = id)
offset <- as.vector(c(1, 1 + cumsum(tapply(id, id, length))))
I <- length(unique(id))
# use lqmm function to initiated values
message("Initiation of parameter values using lqmm package.")
tmp_model <- lqmm::lqmm(fixed = formFixed,
random = formRandom,
group = id,
tau = tau,
data = data_long)
# prior beta parameters
priorMean.beta <- coef.lqmm(tmp_model)
priorTau.beta <- diag(rep(1/10,length(priorMean.beta)))
bis <- as.matrix(lqmm::ranef(tmp_model))
bis[abs(bis)<.0001] <- 0
initial.values <- list(b = bis,
beta = priorMean.beta,
sigma = tmp_model$scale)
# list of data jags
jags.data <- list(y = y,
X = X,
U = U,
tau = tau,
ncX = ncol(X),
ncU = ncol(U),
I = I,
offset = offset,
priorMean.beta = priorMean.beta,
priorTau.beta = priorTau.beta,
priorA.sigma = 1/precision,
priorB.sigma = 1/precision
)
if(jags.data$ncU==1)
RE_ind <- TRUE
if(RE_ind){
jags.data <- c(jags.data,
list(priorA.Sigma2 = 1/precision,
priorB.Sigma2 = 1/precision)
)
initial.values$prec.Sigma2 <- 1/VarCorr(tmp_model)
}else{
jags.data <- c(jags.data,
list(priorR.Sigma2 = diag(rep(1/precision, ncol(U))),
priorK.Sigma2 = ncol(U),
mu0 = rep(0, ncol(U))
)
)
initial.values$prec.Sigma2 <- diag(1/VarCorr(tmp_model))
}
#---- write jags model in txt from R function
if(RE_ind){
jags_code <- "model{
# constants
c1 <- (1-2*tau)/(tau*(1-tau))
c2 <- 2/(tau*(1-tau))
# likelihood
for (i in 1:I){
# longitudinal part
for(j in offset[i]:(offset[i+1]-1)){
y[j] ~ dnorm(mu[j], prec[j])
va1[j] ~ dexp(1/sigma)
prec[j] <- 1/(sigma*c2*va1[j])
mu[j] <- inprod(beta[1:ncX], X[j, 1:ncX]) + inprod(b[i, 1:ncU], U[j, 1:ncU]) + c1*va1[j]
}#end of j loop
# random effects
for(r in 1:ncU){
b[i,r] ~ dnorm(0, prec.Sigma2[r])
}
}#end of i loop
# priors for parameters
for(rr in 1:ncU){
prec.Sigma2[rr] ~ dgamma(priorA.Sigma2, priorB.Sigma2)
covariance.b[rr] <- 1/prec.Sigma2[rr]
}
beta[1:ncX] ~ dmnorm(priorMean.beta[], priorTau.beta[, ])
sigma ~ dgamma(priorA.sigma, priorB.sigma)
}"
}else{
jags_code <- "model{
# constants
c1 <- (1-2*tau)/(tau*(1-tau))
c2 <- 2/(tau*(1-tau))
# likelihood
for (i in 1:I){
# longitudinal part
for(j in offset[i]:(offset[i+1]-1)){
y[j] ~ dnorm(mu[j], prec[j])
va1[j] ~ dexp(1/sigma)
prec[j] <- 1/(sigma*c2*va1[j])
mu[j] <- inprod(beta[1:ncX], X[j, 1:ncX]) + inprod(b[i, 1:ncU], U[j, 1:ncU]) + c1*va1[j]
}#end of j loop
# random effects
b[i, 1:ncU] ~ dmnorm(mu0[], prec.Sigma2[, ])
}#end of i loop
# priors for parameters
prec.Sigma2[1:ncU, 1:ncU] ~ dwish(priorR.Sigma2[, ], priorK.Sigma2)
covariance.b <- inverse(prec.Sigma2[, ])
beta[1:ncX] ~ dmnorm(priorMean.beta[], priorTau.beta[, ])
sigma ~ dgamma(priorA.sigma, priorB.sigma)
}"
}
# regression from X
rplc <- paste(paste("beta[", 1:jags.data$ncX, "] * X[j, ", 1:jags.data$ncX, "]", sep = ""), collapse = " + ")
jags_code <- gsub("inprod(beta[1:ncX], X[j, 1:ncX])", rplc, jags_code, fixed = TRUE)
# regression on random effects b
rplc <- paste(paste("b[i, ", 1:jags.data$ncU, "] * U[j, ", 1:jags.data$ncU, "]", sep = ""), collapse = " + ")
jags_code <- gsub("inprod(b[i, 1:ncU], U[j, 1:ncU])", rplc, jags_code, fixed = TRUE)
# initialisation values
if(n.chains==3)
inits <- list(initial.values,
initial.values,
initial.values)
if(n.chains==2)
inits <- list(initial.values,
initial.values)
if(n.chains==1)
inits <- initial.values
# parameters to save in the sampling step
parms_to_save <- c("beta", "sigma", "b", "covariance.b")
#---- use JAGS sampler via jagsUI
out_jags = jagsUI::jags(data = jags.data,
parameters.to.save = parms_to_save,
model.file = textConnection(jags_code),
inits = inits,
n.chains = n.chains,
parallel = parallel,
n.adapt = n.adapt,
n.iter = n.iter,
n.burnin = n.burnin,
n.thin = n.thin,
DIC = F)
#---- output
out <- list(data = data)
out$control <- list(formFixed = formFixed,
formRandom = formRandom,
formGroup = formGroup,
tau = tau,
call_function = "lqmm",
n.chains = n.chains,
parallel = parallel,
n.adapt = n.adapt,
n.iter = n.iter,
n.burnin = n.burnin,
n.thin = n.thin,
RE_ind = RE_ind,
I = I)
#- other outputs
# sims.list output
out$sims.list <- out_jags$sims.list
out$sims.list$b <- NULL
# random effect output
out$random_effect <- list(postMeans = out_jags$mean$b,
postSd = out_jags$sd$b)
colnames(out$random_effect$postMeans) <- colnames(U)
colnames(out$random_effect$postSd) <- colnames(U)
# median : Posterior median of parameters
out$median <- out_jags$q50
out$median$b <- NULL
# mean : Posterior mean of parameters
out$mean <- out_jags$mean
out$mean$b <- NULL
# modes of parameters
out$modes <- lapply(out$sims.list, function(x) {
m <- function(x) {
d <- stats::density(x, bw = "nrd", adjust = 3, n = 1000)
d$x[which.max(d$y)]
}
if (is.matrix(x))
as.array(apply(x, 2, m))
else{
if(is.array(x))
apply(x, c(2,3), m)
else m(x)
}
})
# standard error of parameters
out$StErr <- lapply(out$sims.list, function(x) {
f <- function(x) {
acf.x <- drop(stats::acf(x, lag.max = 0.4 * length(x), plot = FALSE)$acf)[-1]
acf.x <- acf.x[seq_len(rle(acf.x > 0)$lengths[1])]
ess <- length(x)/(1 + 2 * sum(acf.x))
sqrt(stats::var(x)/ess)
}
if (is.matrix(x))
as.array(apply(x, 2, f))
else{
if(is.array(x))
apply(x, c(2,3), f)
else f(x)
}
})
# standard deviation of parameters
out$StDev <- out_jags$sd
out$StDev$b <- NULL
# Rhat : Gelman & Rubin diagnostic
out$Rhat <- out_jags$Rhat
out$Rhat$b <- NULL
# names
names(out$mean$beta) <-
names(out$median$beta) <-
names(out$modes$beta) <-
names(out$StErr$beta) <-
names(out$Rhat$beta) <-
names(out$StDev$beta) <- colnames(X)
if(RE_ind){
names(out$mean$covariance.b) <-
names(out$median$covariance.b) <-
names(out$modes$covariance.b) <-
names(out$StErr$covariance.b) <-
names(out$Rhat$covariance.b) <-
names(out$StDev$covariance.b) <- colnames(U)
}else{
colnames(out$mean$covariance.b) <-
rownames(out$mean$covariance.b) <-
colnames(out$median$covariance.b) <-
rownames(out$median$covariance.b) <-
colnames(out$modes$covariance.b) <-
rownames(out$modes$covariance.b) <-
colnames(out$Rhat$covariance.b) <-
rownames(out$Rhat$covariance.b) <-
colnames(out$StErr$covariance.b) <-
rownames(out$StErr$covariance.b) <-
colnames(out$StDev$covariance.b) <-
rownames(out$StDev$covariance.b) <- colnames(U)
}
# credible intervalles
out$CIs$beta <- cbind(as.vector(t(out_jags$q2.5$beta)),
as.vector(t(out_jags$q97.5$beta)))
rownames(out$CIs$beta) <- colnames(X)
colnames(out$CIs$beta) <- c("2.5%", "97.5%")
out$CIs$sigma <- c(out_jags$q2.5$sigma,
out_jags$q97.5$sigma)
names(out$CIs$sigma) <- c("2.5%", "97.5%")
# only for diagonal elements of covariance matrix of random effects
if(RE_ind){
out$CIs$covariance.b <- cbind(as.vector(t(out_jags$q2.5$covariance.b)),
as.vector(t(out_jags$q97.5$covariance.b)))
rownames(out$CIs$covariance.b) <- colnames(X)
colnames(out$CIs$covariance.b) <- c("2.5%", "97.5%")
}else{
out$CIs$covariance.b <- cbind(as.vector(diag(out_jags$q2.5$covariance.b)),
as.vector(diag(out_jags$q97.5$covariance.b)))
rownames(out$CIs$covariance.b) <- colnames(U)
colnames(out$CIs$covariance.b) <- c("2.5%", "97.5%")
}
# save jags output if requires
if(save_jagsUI)
out$out_jagsUI <- out_jags
#---- End of the function defining the class and retruning the output
class(out) <- "Blqmm"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.