Nothing
#' Download of hourly data from automatic weather stations (AWS) of INMET-Brazil in daily aggregates
#' @description This function will download the hourly AWS data of INMET and it will aggregate the data in a daily time scale, based on the period of time selected (start_date and end_date).
#' @param stations The stations code (ID - WMO code) for download. To see the station ID, please see the function *see_stations_info*.
#' @param start_date Date that start the investigation, should be in the following format (1958-01-01 /Year-Month-Day)
#' @param end_date Date that end the investigation, should be in the following format (2017-12-31 /Year-Month-Day)
#' @import stringr
#' @import dplyr
#' @import utils
#' @importFrom stats aggregate
#' @importFrom stats na.omit
#' @importFrom utils download.file
#' @importFrom utils read.csv
#' @importFrom utils unzip
#' @importFrom dplyr full_join
#' @importFrom dplyr filter
#' @importFrom dplyr select
#' @importFrom dplyr summarize
#' @importFrom dplyr mutate
#' @importFrom dplyr rename
#' @examples
#' \dontrun{
#' df <- download_AWS_INMET_daily(stations = c("A001","A042"),
#' start_date = "2016-01-01",
#' end_date = "2018-12-31")
#' }
#' @export
#' @return Returns a data.frame with the AWS data requested
#' @author Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha
download_AWS_INMET_daily <- function(stations, start_date, end_date) {
X <- patm_max_mb <- patm_min_mb <- hour <- NULL
dew_tmin_c <- dew_tmax_c <- tair_min_c <- tair_max_c <- dry_bulb_t_c <- NULL
rainfall_mm <- rh_max_porc <- rh_min_porc <- rh_mean_porc <- NULL
ws_10_m_s <- ws_gust_m_s <- wd_degrees <- sr_kj_m2 <- sr_mj_m2 <- NULL
altitude_m <- dew_tmean_c <- latitude_degrees <- longitude_degrees <- patm_mb <- NULL
ra_mj_m2 <- station_code <- tair_mean_c <- uf <- ws_2_m_s <- NULL
start_year <- substr(start_date, 1, 4)
end_year <- substr(end_date, 1, 4)
df_sequence <- data.frame()
for (year in seq(from = as.numeric(start_year), to = as.numeric(end_year))) {
message("Downloading data for: ", year)
tempdir <- tempfile()
tf <- paste0(gsub("\\", "/", tempdir, fixed = TRUE), ".zip")
outdir <- gsub("\\", "/", tempdir, fixed = TRUE)
options(timeout = 600)
utils::download.file(url = paste0("https://portal.inmet.gov.br/uploads/dadoshistoricos/", year, ".zip"),
destfile = tf, method = "auto", cacheOK = F, quiet = T)
a <- unzip(zipfile = tf, exdir = outdir, junkpaths = T)
df_all_stations <- data.frame()
for(station in stations){
station_file <- list.files(outdir, pattern = station, full.names = T, all.files = T)
if (length(station_file) == 0) {
message("There is no data for this period for this station. Choose another period!")
} else {
dfx <- read.csv(file = station_file,
header = T,
sep = ";",
skip = 8,
na = "-9999",
dec = ",",
check.names = F)
header_info <- read.csv(file = station_file, header = F, sep = ";")
OMM <- header_info[4, 2]
UF <- header_info[2, 2]
station <- header_info[3, 2]
# Função para converter coordenadas no formato correto
convert_coord <- function(coord) {
lat_part <- substr(coord, 1, 3)
dec_part <- substr(coord, 5, 10)
as.numeric(paste0(lat_part, ".", dec_part))}
# Extrai e converte os valores desejados
latitude <- convert_coord(header_info[5, 2])
longitude <- convert_coord(header_info[6, 2])
# Ajuste da altitude
altitude <- as.numeric(gsub(",", ".", header_info[7, 2]))
names(dfx) <- c(
"date", "hour", "rainfall_mm", "patm_mb",
"patm_max_mb", "patm_min_mb", "sr_kj_m2",
"dry_bulb_t_c", "dew_tmean_c", "tair_max_c", "tair_min_c", "dew_tmax_c",
"dew_tmin_c", "rh_max_porc", "rh_min_porc", "rh_mean_porc", "wd_degrees",
"ws_gust_m_s", "ws_10_m_s", "X"
)
dfx <- dplyr::select(dfx, -X, -patm_max_mb, -patm_min_mb)
dfx <- tibble::as_tibble(dfx)
dfx <- dplyr::mutate(dfx, date = as.Date(date), hour = as.numeric(as.factor(hour)))
dfx$date_hour <- paste0(dfx$date, dfx$hour)
dfx$date_hour <- as.POSIXct(strptime(dfx$date_hour, format = "%Y-%m-%d %H"))
for (i in 1:nrow(dfx)) {
if (longitude > -37.5) { (dfx$date_hour[i] <- dfx$date_hour[i] - as.difftime(2, units = "hours"))} else if (longitude > -52.5) {
(dfx$date_hour[i] <- dfx$date_hour[i] - as.difftime(3, units = "hours"))
} else if (longitude > -67.5) {
(dfx$date_hour[i] <- dfx$date_hour[i] - as.difftime(4, units = "hours"))
} else if (longitude > -82.5) {
(dfx$date_hour[i] <- dfx$date_hour[i] - as.difftime(5, units = "hours"))
}
}
dfx$date <- as.POSIXct(strptime(dfx$date_hour, format = "%Y-%m-%d"))
dfx$hour <- format(as.POSIXct(dfx$date_hour, format = "%Y-%m-%d %H"),"%H")
diff_days <- as.Date(end_date) - as.Date(start_date)
#estudar melhor essa condicao
# if (nrow(dfx) < 4380 & diff_days > 120) {} else {
#dfx_temp <- na.omit(dplyr::select(dfx, hour, date, dew_tmin_c, dew_tmax_c, tair_min_c, tair_max_c, dry_bulb_t_c))
dfx_temp <- dplyr::select(dfx, hour, date, dew_tmin_c, dew_tmax_c, tair_min_c, tair_max_c, dry_bulb_t_c)
n_dfx_temp <- dplyr::group_by(dfx_temp, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_temp) == 0) {} else {
dfx_temp <- dplyr::left_join(dfx_temp, n_dfx_temp, by = "date")
dfx_temp <- dplyr::filter(dfx_temp, n == 24)
dfx_temp <- dplyr::mutate(dfx_temp, tair_mean_c = (tair_min_c + tair_max_c / 2))
dfx_temp <- dplyr::mutate(dfx_temp, dew_tmean_c = (dew_tmin_c + dew_tmax_c / 2))
dfx_temp_mean_day <- stats::aggregate(tair_mean_c ~ date, dfx_temp, mean)
dfx_temp_min_day <- stats::aggregate(tair_min_c ~ date, dfx_temp, min)
dfx_temp_max_day <- stats::aggregate(tair_max_c ~ date, dfx_temp, max)
dfx_to_min_day <- stats::aggregate(dew_tmin_c ~ date, dfx_temp, min)
dfx_to_max_day <- stats::aggregate(dew_tmax_c ~ date, dfx_temp, max)
dfx_to_mean_day <- stats::aggregate(dew_tmean_c ~ date, dfx_temp, mean)
dfx_tbs_day <- stats::aggregate(dry_bulb_t_c ~ date, dfx_temp, mean)
dfx_temps_day <- dfx_temp_mean_day %>%
left_join(dfx_temp_min_day, by = "date") %>%
left_join(dfx_temp_max_day, by = "date") %>%
left_join(dfx_to_mean_day, by = "date") %>%
left_join(dfx_to_min_day, by = "date") %>%
left_join(dfx_to_max_day, by = "date") %>%
left_join(dfx_tbs_day, by = "date")}
#dfx_prec <- na.omit(dplyr::select(dfx, hour, date, rainfall_mm))
dfx_prec <- dplyr::select(dfx, hour, date, rainfall_mm)
dfx_prec <- dplyr::group_by(dfx_prec, date)
if (nrow(dfx_prec) == 0) {} else {
dfx_prec_day <- stats::aggregate(rainfall_mm ~ date, dfx_prec, sum)
}
#dfx_press <- na.omit(dplyr::select(dfx, hour, date, patm_mb))
dfx_press <- dplyr::select(dfx, hour, date, patm_mb)
n_dfx_press <- dplyr::group_by(dfx_press, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_press) == 0) {} else {
dfx_press <- dplyr::left_join(dfx_press, n_dfx_press, by = "date")
dfx_press <- dplyr::filter(dfx_press, n == 24)
dfx_press_mean_day <- stats::aggregate(patm_mb ~ date, dfx_press, mean)}
#dfx_ur <- na.omit(dplyr::select(dfx, hour, date, rh_max_porc, rh_min_porc, rh_mean_porc))
dfx_ur <- dplyr::select(dfx, hour, date, rh_max_porc, rh_min_porc, rh_mean_porc)
n_dfx_ur <- dplyr::group_by(dfx_ur, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_ur) == 0) {} else {
dfx_ur <- dplyr::left_join(dfx_ur, n_dfx_ur, by = "date")
dfx_ur <- dplyr::filter(dfx_ur, n == 24)
dfx_ur_mean_day <- stats::aggregate(rh_mean_porc ~ date, dfx_ur, mean)
dfx_ur_min_day <- aggregate(rh_min_porc ~ date, dfx_ur, min)
dfx_ur_max_day <- stats::aggregate(rh_max_porc ~ date, dfx_ur, max)
dfx_urs_day <- dfx_ur_mean_day|>
dplyr::left_join(dfx_ur_max_day, by = "date")|>
dplyr::left_join(dfx_ur_min_day, by = "date")}
#dfx_vv <- na.omit(dplyr::select(dfx, hour, date, ws_10_m_s, ws_gust_m_s, wd_degrees))
dfx_vv <- dplyr::select(dfx, hour, date, ws_10_m_s, ws_gust_m_s, wd_degrees)
n_dfx_vv <- dplyr::group_by(dfx_vv, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_vv) == 0) {} else {
dfx_vv <- dplyr::left_join(dfx_vv, n_dfx_vv, by = "date")
dfx_vv <- dplyr::filter(dfx_vv, n == 24)
dfx_vv <- dplyr::mutate(dfx_vv, u2 = (4.868 / (log(67.75 *10 - 5.42))) * ws_10_m_s)
dfx_vv_mean_day <- aggregate(ws_10_m_s ~ date, dfx_vv, mean)
dfx_vv_meanu2_day <- aggregate(u2 ~ date, dfx_vv, mean)
dfx_vv_raj_day <- stats::aggregate(ws_gust_m_s ~ date, dfx_vv, max)
dfx_vv_dir_day <- stats::aggregate(wd_degrees ~ date, dfx_vv, mean)
dfx_vvs_day <- dfx_vv_mean_day|>
dplyr::left_join(dfx_vv_meanu2_day, by = "date")|>
dplyr::left_join(dfx_vv_raj_day, by = "date")|>
dplyr::left_join(dfx_vv_dir_day, by = "date")}
dfx_RG <- dplyr::select(dfx, hour, date, sr_kj_m2)
dfx_RG <- dplyr::mutate(dfx_RG, sr_mj_m2 = sr_kj_m2 / 1000)
#dfx_RG <- na.omit(dplyr::select(dfx_RG, sr_kj_m2))
dfx_RG <- dplyr::select(dfx_RG, date, sr_mj_m2)########
dfx_RG <- dplyr::filter(dfx_RG, sr_mj_m2 > 0)
n_RG <- dplyr::group_by(dfx_RG, date) |>
summarise(n = n()) |>
filter(n >= 12)
if (nrow(n_RG) == 0) {} else {
dfx_RG <- dplyr::left_join(dfx_RG, n_RG, by = "date")
dfx_RG <- dplyr::filter(dfx_RG, n >= 12)
dfx_RG_sum_day <- aggregate(sr_mj_m2 ~ date, dfx_RG, sum)
dfx_RG_sum_day <- dfx_RG_sum_day |>
dplyr::mutate(julian_day = as.numeric(format(date, "%j")))
lat_rad <- (pi / 180) * (latitude)
dr <- 1 + 0.033 * cos((2 * pi / 365) *
dfx_RG_sum_day$julian_day)
solar_declination <- 0.409 * sin(((2 *pi / 365) * dfx_RG_sum_day$julian_day) - 1.39)
sunset_hour_angle <- acos(-tan(lat_rad) * tan(solar_declination))
ra <- ((24 * (60)) / pi) * (0.082) *
dr * (sunset_hour_angle * sin(lat_rad) *
sin(solar_declination) + cos(lat_rad) *
cos(solar_declination) * sin(sunset_hour_angle))
ra <- as.data.frame(ra)
dfx_RG_sum_day <- dplyr::bind_cols(dfx_RG_sum_day, ra)}
dfx_day <- dplyr::full_join(dfx_temps_day, dfx_prec_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_press_mean_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_urs_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_vvs_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_RG_sum_day, by = "date")
dfx_day <- dplyr::mutate(dfx_day, OMM = OMM)
df <- dfx_day
df <- dplyr::filter(df, date >= start_date & date <= end_date)
df <- df |>
dplyr::mutate(
station = station,
UF = UF,
longitude_degrees = longitude,
latitude_degrees = latitude,
altitude_m = altitude)|>
dplyr::arrange(station, date) |>
dplyr::rename("station_code" = "OMM",
"uf" = "UF",
"ws_2_m_s" = "u2",
"ra_mj_m2" = "ra")|>
dplyr::select(c(station_code,
station,
uf,
date,
tair_mean_c,
tair_min_c,
tair_max_c,
dew_tmean_c,
dew_tmin_c,
dew_tmax_c,
dry_bulb_t_c,
rainfall_mm,
patm_mb,
rh_mean_porc,
rh_max_porc,
rh_min_porc,
ws_10_m_s,
ws_2_m_s,
ws_gust_m_s,
wd_degrees,
sr_mj_m2,
ra_mj_m2,
longitude_degrees,
latitude_degrees,
altitude_m))
}
df_all_stations <- rbind(df_all_stations, df)
}
df_sequence <- rbind(df_sequence, df_all_stations)
df_sequence <- df_sequence
}
return(df_sequence)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.