Nothing
#' Download of hourly data from automatic weather stations (AWS) of INMET-Brazil in daily aggregates
#' @description This function will download the hourly AWS data of INMET and it will aggregate the data in a daily time scale, based on the period of time selected (start_date and end_date).
#' @param stations The stations code (ID - WMO code) for download. To see the station ID, please see the function *see_stations_info*.
#' @param start_date Date that start the investigation, should be in the following format (1958-01-01 /Year-Month-Day)
#' @param end_date Date that end the investigation, should be in the following format (2017-12-31 /Year-Month-Day)
#' @import stringr
#' @import dplyr
#' @import utils
#' @importFrom stats aggregate
#' @importFrom stats na.omit
#' @importFrom utils download.file
#' @importFrom utils read.csv
#' @importFrom utils unzip
#' @importFrom dplyr full_join
#' @importFrom dplyr filter
#' @importFrom dplyr select
#' @importFrom dplyr summarize
#' @importFrom dplyr mutate
#' @importFrom dplyr rename
#' @examples
#' \dontrun{
#' df <- download_AWS_INMET_daily(
#' stations = c("A001", "A042"),
#' start_date = "2016-01-01",
#' end_date = "2018-12-31"
#' )
#' }
#' @export
#' @return Returns a data.frame with the AWS data requested
#' @author Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha
download_AWS_INMET_daily <- function(stations, start_date, end_date) {
X <- patm_max_mb <- patm_min_mb <- hour <- NULL
dew_tmin_c <- dew_tmax_c <- tair_min_c <- tair_max_c <- tair_dry_bulb_c <- NULL
rainfall_mm <- rh_max_porc <- rh_min_porc <- rh_mean_porc <- NULL
ws_2_m_s <- ws_gust_m_s <- wd_degrees <- sr_kj_m2 <- sr_mj_m2 <- NULL
date_hour <- UTC_offset <- date_hour_local <- NULL
altitude_m <- dew_tmean_c <- latitude_degrees <- longitude_degrees <- patm_mb <- NULL
ra_mj_m2 <- station_code <- tair_mean_c <- uf <- ws_2_m_s <- NULL
start_year <- substr(start_date, 1, 4)
end_year <- substr(end_date, 1, 4)
df_sequence <- data.frame()
for (year in seq(from = as.numeric(start_year), to = as.numeric(end_year))) {
message("Downloading data for: ", year)
tempdir <- tempfile()
tf <- paste0(gsub("\\", "/", tempdir, fixed = TRUE), ".zip")
outdir <- gsub("\\", "/", tempdir, fixed = TRUE)
options(timeout = 600)
utils::download.file(
url = paste0("https://portal.inmet.gov.br/uploads/dadoshistoricos/", year, ".zip"),
destfile = tf, method = "auto", cacheOK = F, quiet = T
)
a <- unzip(zipfile = tf, exdir = outdir, junkpaths = T)
df_all_stations <- data.frame()
for (station in stations) {
station_file <- list.files(outdir, pattern = station, full.names = T, all.files = T)
if (length(station_file) == 0) {
message("There is no data for this period for this station. Choose another period!")
} else {
df <- data.frame()
dfx <- read.csv(
file = station_file,
header = T,
sep = ";",
skip = 8,
na = "-9999",
dec = ",",
check.names = F
)
header_info <- read.csv(file = station_file, header = F, sep = ";")
OMM <- header_info[4, 2]
UF <- header_info[2, 2]
station <- header_info[3, 2]
# Função para converter coordenadas no formato correto
convert_coord <- function(coord) {
# lat_part <- substr(coord, 1, 3)
lat_part <- sub(",.*", "", coord) #
# dec_part <- substr(coord, 5, 10)
dec_part <- sub(".*,", "", coord)
as.numeric(paste0(lat_part, ".", dec_part))
}
# Extrai e converte os valores desejados
latitude <- convert_coord(header_info[5, 2])
longitude <- convert_coord(header_info[6, 2])
# Ajuste da altitude
altitude <- as.numeric(gsub(",", ".", header_info[7, 2]))
names(dfx) <- c(
"date", "hour", "rainfall_mm", "patm_mb",
"patm_max_mb", "patm_min_mb", "sr_kj_m2",
"tair_dry_bulb_c", "dew_tmean_c", "tair_max_c", "tair_min_c", "dew_tmax_c",
"dew_tmin_c", "rh_max_porc", "rh_min_porc", "rh_mean_porc", "wd_degrees",
"ws_gust_m_s", "ws_2_m_s", "X"
)
dfx <- dplyr::select(dfx, -X, -patm_max_mb, -patm_min_mb)
dfx <- tibble::as_tibble(dfx)
dfx <- dplyr::mutate(dfx,
date = as.Date(date),
hour = as.numeric(substr(hour, 1, 2))
)
dfx$date_hour <- paste0(dfx$date, " ", dfx$hour)
dfx$date_hour <- as.POSIXct(strptime(dfx$date_hour, format = "%Y-%m-%d %H"))
dfx <- dfx %>%
dplyr::mutate(
# Define o offset por estado
UTC_offset = case_when(
UF == "AC" ~ -5, # UTC-5 (Acre)
UF %in% c("AM", "MT", "RO", "RR") ~ -4, # UTC-4 (Amazonas, Mato Grosso, Rondônia, Roraima)
UF %in% c(
"MS", "GO", "DF", "TO", "BA", "SE", "AL", "PE", "PB",
"RN", "CE", "PI", "MA", "PA", "AP", "SP", "RJ", "MG", "ES",
"PR", "SC", "RS"
) ~ -3, # UTC-3 (Maior parte do Brasil)
TRUE ~ 0 # Caso não encontre a UF, mantém UTC
),
# Ajusta para horário local
date_hour_local = date_hour + hours(UTC_offset)
) %>%
dplyr::mutate(
# Extraindo a data e a hora corretamente
date = as.POSIXct(strptime(date_hour_local, format = "%Y-%m-%d")), # Apenas a data
hour = format(date_hour_local, "%H:%M:%S") # Apenas a hora
) %>%
select(-UTC_offset)
agg_safe_fillna <- function(df, formula, fun, ...) {
var <- all.vars(formula)[1]
group_var <- all.vars(formula)[2]
if (all(is.na(df[[var]]))) {
# Retorna um data.frame com NA para cada data única
dates <- unique(df[[group_var]])
return(data.frame(date = dates, tmp = NA_real_)) |>
stats::setNames(c(group_var, var))
} else {
return(stats::aggregate(formula, df, fun, ...))
}
}
# estudar melhor essa condicao
# if (nrow(dfx) < 4380 & diff_days > 120) {} else {
# dfx_temp <- na.omit(dplyr::select(dfx, hour, date, dew_tmin_c, dew_tmax_c, tair_min_c, tair_max_c, dry_bulb_t_c))
dfx_temp <- dplyr::select(dfx, hour, date, dew_tmin_c, dew_tmean_c, dew_tmax_c, tair_min_c, tair_max_c, tair_dry_bulb_c)
# Remove colunas totalmente NA (caso alguma esteja completamente vazia)
# Filtra linhas que não têm todos os campos relevantes como NA
dfx_temp <- dfx_temp %>%
dplyr::filter(!(is.na(tair_min_c) & is.na(tair_max_c) & is.na(tair_dry_bulb_c) & is.na(dew_tmin_c) & is.na(dew_tmean_c) & is.na(dew_tmax_c)))
n_dfx_temp <- dplyr::group_by(dfx_temp, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_temp) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - Group of air temperature variables"))
} else {
dfx_temp <- dplyr::left_join(dfx_temp, n_dfx_temp, by = "date")
dfx_temp <- dplyr::filter(dfx_temp, n == 24)
# dfx_temp <- dplyr::mutate(dfx_temp, tair_mean_c = ((tair_min_c + tair_max_c) / 2))
# dfx_temp <- dplyr::mutate(dfx_temp, dew_tmean_c = ((dew_tmin_c + dew_tmax_c) / 2))
dfx_temp_mean_day <- agg_safe_fillna(dfx_temp, tair_dry_bulb_c ~ date, mean, na.rm = TRUE)
names(dfx_temp_mean_day)[2] <- "tair_dry_bulb_c"
dfx_temp_min_day <- agg_safe_fillna(dfx_temp, tair_min_c ~ date, min, na.rm = TRUE)
names(dfx_temp_min_day)[2] <- "tair_min_c"
dfx_temp_max_day <- agg_safe_fillna(dfx_temp, tair_max_c ~ date, max, na.rm = TRUE)
names(dfx_temp_max_day)[2] <- "tair_max_c"
dfx_to_min_day <- agg_safe_fillna(dfx_temp, dew_tmin_c ~ date, min, na.rm = TRUE)
names(dfx_to_min_day)[2] <- "dew_tmin_c"
dfx_to_max_day <- agg_safe_fillna(dfx_temp, dew_tmax_c ~ date, max, na.rm = TRUE)
names(dfx_to_max_day)[2] <- "dew_tmax_c"
dfx_to_mean_day <- agg_safe_fillna(dfx_temp, dew_tmean_c ~ date, mean, na.rm = TRUE)
names(dfx_to_mean_day)[2] <- "dew_tmean_c"
joins <- list(dfx_temp_min_day, dfx_temp_max_day, dfx_to_mean_day, dfx_to_min_day, dfx_to_max_day)
dfx_temps_day <- dfx_temp_mean_day
for (j in joins) {
if (!is.null(j)) {
dfx_temps_day <- left_join(dfx_temps_day, j, by = "date")
}
}
dfx_temps_day <- dfx_temps_day %>%
dplyr::rename("tair_mean_c" = "tair_dry_bulb_c")
}
# dfx_prec <- na.omit(dplyr::select(dfx, hour, date, rainfall_mm))
dfx_prec <- dplyr::select(dfx, hour, date, rainfall_mm)
dfx_prec <- dplyr::group_by(dfx_prec, date)
# Filtra linhas que não têm todos os campos relevantes como NA
dfx_prec <- dfx_prec %>%
dplyr::filter(!(is.na(rainfall_mm)))
if (nrow(dfx_prec) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - Rainfall group"))
} else {
#dfx_prec_day <- stats::aggregate(rainfall_mm ~ date, dfx_prec, sum)
dfx_prec_day <- agg_safe_fillna(dfx_prec, rainfall_mm ~ date, sum, na.rm = TRUE)
names(dfx_prec_day)[2] <- "rainfall_mm"
}
# dfx_press <- na.omit(dplyr::select(dfx, hour, date, patm_mb))
dfx_press <- dplyr::select(dfx, hour, date, patm_mb)
dfx_press <- dfx_press %>%
dplyr::filter(!(is.na(patm_mb)))
n_dfx_press <- dplyr::group_by(dfx_press, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_press) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - Atmosphere pressure group"))
} else {
dfx_press <- dplyr::left_join(dfx_press, n_dfx_press, by = "date")
dfx_press <- dplyr::filter(dfx_press, n == 24)
#dfx_press_mean_day <- stats::aggregate(patm_mb ~ date, dfx_press, mean)
dfx_press_mean_day <- agg_safe_fillna(dfx_press, patm_mb ~ date, mean, na.rm = TRUE)
names(dfx_press_mean_day)[2] <- "patm_mb"
}
# dfx_ur <- na.omit(dplyr::select(dfx, hour, date, rh_max_porc, rh_min_porc, rh_mean_porc))
dfx_ur <- dplyr::select(dfx, hour, date, rh_max_porc, rh_min_porc, rh_mean_porc)
# Filtra linhas que não têm todos os campos relevantes como NA
dfx_ur <- dfx_ur %>%
dplyr::filter(!(is.na(rh_max_porc)) & !(is.na(rh_min_porc)) & !(is.na(rh_mean_porc)))
n_dfx_ur <- dplyr::group_by(dfx_ur, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_ur) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - Relative Humidity group"))
} else {
dfx_ur <- dplyr::left_join(dfx_ur, n_dfx_ur, by = "date")
dfx_ur <- dplyr::filter(dfx_ur, n == 24)
#dfx_ur_mean_day <- stats::aggregate(rh_mean_porc ~ date, dfx_ur, mean)
#dfx_ur_min_day <- aggregate(rh_min_porc ~ date, dfx_ur, min)
#dfx_ur_max_day <- stats::aggregate(rh_max_porc ~ date, dfx_ur, max)
dfx_ur_mean_day <- agg_safe_fillna(dfx_ur, rh_mean_porc ~ date, mean, na.rm = TRUE)
names(dfx_ur_mean_day)[2] <- "rh_mean_porc"
dfx_ur_min_day <- agg_safe_fillna(dfx_ur, rh_min_porc ~ date, min, na.rm = TRUE)
names(dfx_ur_min_day)[2] <- "rh_min_porc"
dfx_ur_max_day <- agg_safe_fillna(dfx_ur, rh_max_porc ~ date, max, na.rm = TRUE)
names(dfx_ur_max_day)[2] <- "rh_max_porc"
joins <- list(dfx_ur_min_day, dfx_ur_max_day)
dfx_urs_day <- dfx_ur_mean_day
for (j in joins) {
if (!is.null(j)) {
dfx_urs_day <- left_join(dfx_urs_day, j, by = "date")
}
}
#dfx_urs_day <- dfx_ur_mean_day |>
# dplyr::left_join(dfx_ur_max_day, by = "date") |>
# dplyr::left_join(dfx_ur_min_day, by = "date")
}
# dfx_vv <- na.omit(dplyr::select(dfx, hour, date, ws_2_m_s, ws_gust_m_s, wd_degrees))
dfx_vv <- dplyr::select(dfx, hour, date, ws_2_m_s, ws_gust_m_s, wd_degrees)
dfx_vv <- dfx_vv %>%
dplyr::filter(!(is.na(ws_2_m_s)) & !(is.na(ws_gust_m_s)) & !(is.na(wd_degrees)))
n_dfx_vv <- dplyr::group_by(dfx_vv, date) |>
dplyr::summarise(n = n()) |>
dplyr::filter(n == 24)
if (nrow(n_dfx_vv) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - wind speed group"))
} else {
dfx_vv <- dplyr::left_join(dfx_vv, n_dfx_vv, by = "date")
dfx_vv <- dplyr::filter(dfx_vv, n == 24)
# dfx_vv <- dplyr::mutate(dfx_vv, u2 = (4.868 / (log(67.75 *10 - 5.42))) * ws_10_m_s)
#dfx_vv_mean_day <- aggregate(ws_2_m_s ~ date, dfx_vv, mean)
# dfx_vv_meanu2_day <- aggregate(u2 ~ date, dfx_vv, mean)
#dfx_vv_raj_day <- stats::aggregate(ws_gust_m_s ~ date, dfx_vv, max)
#dfx_vv_dir_day <- stats::aggregate(wd_degrees ~ date, dfx_vv, mean)
dfx_vv_mean_day <- agg_safe_fillna(dfx_vv, ws_2_m_s ~ date, mean, na.rm = TRUE)
names(dfx_vv_mean_day)[2] <- "ws_2_m_s"
dfx_vv_raj_day <- agg_safe_fillna(dfx_vv, ws_gust_m_s ~ date, max, na.rm = TRUE)
names(dfx_vv_raj_day)[2] <- "ws_gust_m_s"
dfx_vv_dir_day <- agg_safe_fillna(dfx_vv, wd_degrees ~ date, mean, na.rm = TRUE)
names(dfx_vv_dir_day)[2] <- "wd_degrees"
joins <- list(dfx_vv_raj_day, dfx_vv_raj_day)
dfx_vvs_day <- dfx_vv_mean_day
for (j in joins) {
if (!is.null(j)) {
dfx_vvs_day <- left_join(dfx_vvs_day, j, by = "date")
}
}
#dfx_vvs_day <- dfx_vv_mean_day |>
# dplyr::left_join(dfx_vv_meanu2_day, by = "date")|>
#dplyr::left_join(dfx_vv_raj_day, by = "date") |>
#dplyr::left_join(dfx_vv_dir_day, by = "date")
}
dfx_RG <- dplyr::select(dfx, hour, date, sr_kj_m2)
dfx_RG <- dfx_RG %>%
dplyr::filter(!(is.na(sr_kj_m2)))
dfx_RG <- dplyr::mutate(dfx_RG, sr_mj_m2 = sr_kj_m2 / 1000)
# dfx_RG <- na.omit(dplyr::select(dfx_RG, sr_kj_m2))
dfx_RG <- dplyr::select(dfx_RG, date, sr_mj_m2) ########
dfx_RG <- dplyr::filter(dfx_RG, sr_mj_m2 > 0)
n_RG <- dplyr::group_by(dfx_RG, date) |>
summarise(n = n()) |>
filter(n >= 12)
if (nrow(n_RG) == 0) {
message(paste0("No valid data for this period in this station: ", OMM, " - year ", year, " - Radiation group"))
} else {
dfx_RG <- dplyr::left_join(dfx_RG, n_RG, by = "date")
dfx_RG <- dplyr::filter(dfx_RG, n >= 12)
#dfx_RG_sum_day <- aggregate(sr_mj_m2 ~ date, dfx_RG, sum)
dfx_RG_sum_day <- agg_safe_fillna(dfx_RG, sr_mj_m2 ~ date, sum, na.rm = TRUE)
names(dfx_RG_sum_day)[2] <- "sr_mj_m2"
dfx_RG_sum_day <- dfx_RG_sum_day |>
dplyr::mutate(julian_day = as.numeric(format(date, "%j")))
lat_rad <- (pi / 180) * (latitude)
dr <- 1 + 0.033 * cos((2 * pi / 365) *
dfx_RG_sum_day$julian_day)
solar_declination <- 0.409 * sin(((2 * pi / 365) * dfx_RG_sum_day$julian_day) - 1.39)
sunset_hour_angle <- acos(-tan(lat_rad) * tan(solar_declination))
ra <- ((24 * (60)) / pi) * (0.082) *
dr * (sunset_hour_angle * sin(lat_rad) *
sin(solar_declination) + cos(lat_rad) *
cos(solar_declination) * sin(sunset_hour_angle))
ra <- as.data.frame(ra)
dfx_RG_sum_day <- dplyr::bind_cols(dfx_RG_sum_day, ra)
}
if (exists("dfx_temps_day") && nrow(dfx_temps_day) > 0 &&
exists("dfx_prec_day") && nrow(dfx_prec_day) > 0 &&
exists("dfx_press_mean_day") && nrow(dfx_press_mean_day) > 0 &&
exists("dfx_urs_day") && nrow(dfx_urs_day) > 0 &&
exists("dfx_vvs_day") && nrow(dfx_vvs_day) > 0 &&
exists("dfx_RG_sum_day") && nrow(dfx_RG_sum_day) > 0) {
dfx_day <- dplyr::full_join(dfx_temps_day, dfx_prec_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_press_mean_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_urs_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_vvs_day, by = "date")
dfx_day <- dplyr::full_join(dfx_day, dfx_RG_sum_day, by = "date")
dfx_day <- dplyr::mutate(dfx_day, OMM = OMM)
df <- dfx_day
df <- dplyr::filter(df, date >= start_date & date <= end_date)
df <- df |>
dplyr::mutate(
station = station,
UF = UF,
longitude_degrees = longitude,
latitude_degrees = latitude,
altitude_m = altitude
) |>
dplyr::arrange(station, date) |>
dplyr::rename(
"station_code" = "OMM",
"uf" = "UF",
# "ws_2_m_s" = "u2",
"ra_mj_m2" = "ra"
) |>
dplyr::select(c(
station_code,
station,
uf,
date,
tair_mean_c,
tair_min_c,
tair_max_c,
dew_tmean_c,
dew_tmin_c,
dew_tmax_c,
rainfall_mm,
patm_mb,
rh_mean_porc,
rh_max_porc,
rh_min_porc,
ws_2_m_s,
ws_gust_m_s,
wd_degrees,
sr_mj_m2,
ra_mj_m2,
longitude_degrees,
latitude_degrees,
altitude_m
))
} else {}
}
df_all_stations <- rbind(df_all_stations, df)
}
df_sequence <- rbind(df_sequence, df_all_stations)
df_sequence <- df_sequence
}
return(df_sequence)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.