Nothing
## File Name: gdina_attr_rpf_hogdina.R
## File Version: 0.19
####################################
# function for calculating attribute response function
gdina_attr_rpf_hogdina <- function( attr.patt, attr.prob, theta.k, wgt.theta, HOGDINA,
tetrachoric=NULL )
{
#- use weights for calculation of tetrachoric correlation
wc <- cdm_tetrachoric( dat=attr.patt, weights=attr.prob, rho_init=tetrachoric$rho,
maxit=200 )
b <- wc$tau
NB <- length(b)
TP <- length(theta.k)
NAP <- nrow(attr.patt)
if (HOGDINA>0){
upper_bound <- .99
L <- cdm_fa1( Sigma=wc$rho, method=1 )$L
L <- as.vector( L )
L <- ifelse( L > upper_bound, upper_bound, L )
L <- L / ( max(1,max(L)) + .0025 )
L1 <- L / sqrt( 1 - L^2 )
} else {
L1 <- L <- rep(0,NB)
}
b1 <- b / sqrt( 1-L^2 )
# calculate probabilities using the factor model
probs <- stats::pnorm( L1 * matrix( theta.k, nrow=NB, ncol=TP, byrow=TRUE) - b1 )
probsL <- array( 0, dim=c( NB, 2, TP ) )
probsL[,2,] <- probs
probsL[,1,] <- 1 - probs
# probsL
probsAP <- array( 1, dim=c( NAP, TP) )
for (kk in 1:NB){
probsAP <- probsAP * probsL[ kk, attr.patt[,kk] + 1, ]
}
# expected attribute probabilities
attr.prob.exp <- rowSums( probsAP * matrix( wgt.theta, nrow=NAP, ncol=TP, byrow=TRUE ) )
res <- list( a.attr=L1, b.attr=b1, attr.prob.exp=attr.prob.exp,
tetrachoric=wc)
return(res)
}
#####################################################################
.attr.rpf <- gdina_attr_rpf_hogdina
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.