Nothing
###################################################################################
#' Evolutionary Algorithm for Combinatorial Optimization
#'
#' A basic implementation of a simple Evolutionary Algorithm for Combinatorial Optimization. Default evolutionary operators
#' aim at permutation optimization problems.
#'
#' @param x Optional start individual(s) as a list. If NULL (default), \code{creationFunction} (in \code{control} list) is used to create initial design.
#' If \code{x} has less individuals than the population size, creationFunction will fill up the rest.
#' @param fun target function to be minimized
#' @param control (list), with the options:
#' \describe{
#' \item{\code{budget}}{The limit on number of target function evaluations (stopping criterion) (default: 1000).}
#' \item{\code{popsize}}{Population size (default: 100).}
#' \item{\code{generations}}{Number of generations (stopping criterion) (default: Inf).}
#' \item{\code{targetY}}{Target function value (stopping criterion) (default: -Inf).}
#' \item{\code{vectorized}}{Boolean. Defines whether target function is vectorized (takes a list of solutions as argument) or not (takes single solution as argument). Default: FALSE.}
#' \item{\code{verbosity}}{Level of text output during run. Defaults to 0, no output.}
#' \item{\code{plotting}}{Plot optimization progress during run (TRUE) or not (FALSE). Default is FALSE.}
#' \item{\code{archive}}{Whether to keep all candidate solutions and their fitness in an archive (TRUE) or not (FALSE). Default is TRUE. New solutions that are identical to an archived one, will not be evaluated. Instead, their fitness is taken from the archive.}
#' \item{\code{recombinationFunction}}{Function that performs recombination, default: \code{\link{recombinationPermutationCycleCrossover}}, which is cycle crossover for permutations.}
#' \item{\code{recombinationRate}}{Number of offspring, defined by the fraction of the population (popsize) that will be recombined.}
#' \item{\code{mutationFunction}}{Function that performs mutation, default: \code{\link{mutationPermutationSwap}}, which is swap mutation for permutations.}
#' \item{\code{parameters}}{Default parameter list for the algorithm, e.g., mutation rate, etc.}
#' \item{\code{selection}}{Survival selection process: "tournament" (default) or "truncation".}
#' \item{\code{tournamentSize}}{Tournament size (default: 2).}
#' \item{\code{tournamentProbability}}{Tournament probability (default: 0.9).}
#' \item{\code{localSearchFunction}}{If specified, this function is used for a local search step. Default is NULL. }
#' \item{\code{localSearchRate}}{Specifies on what fraction of the population local search is applied. Default is zero. Maximum is 1 (100 percent).}
#' \item{\code{localSearchSettings}}{List of settings passed to the local search function control parameter.}
#' \item{\code{stoppingCriterionFunction}}{Custom additional stopping criterion. Function evaluated on the population, receiving all individuals (list) and their fitness (vector). If the result is FALSE, the algorithm stops.}
#' \item{\code{verbosity}}{>0 for text output.}
#' \item{\code{creationFunction}}{Function to create individuals/solutions in search space. Default is a function that creates random permutations of length 6.}
#' \item{\code{selfAdaption}}{An optional list object, that describes parameters of the optimization (see \code{parameters}) which are subject to self-adaption. An example is given in \link{mutationSelfAdapt}. Types of the parameters can be integer, discrete, or numeric.}
#' \item{\code{selfAdaptTau}}{Positive numeric value, that controls the learning rate of numerical/integer self-adaptive parameters.}
#' \item{\code{selfAdaptP}}{Value in [0,1]. A probability of mutation for all categorical, self-adaptive parameters.}
#' }
#'
#' @return a list:
#' \describe{
#' \item{\code{xbest}}{best solution found.}
#' \item{\code{ybest}}{fitness of the best solution.}
#' \item{\code{x}}{history of all evaluated solutions.}
#' \item{\code{y}}{corresponding target function values f(x).}
#' \item{\code{count}}{number of performed target function evaluations.}
#' \item{\code{message}}{Termination message: Which stopping criterion was reached.}
#' \item{\code{population}}{Last population.}
#' \item{\code{fitness}}{Fitness of last population.}
#' }
#'
#' @examples
#' #First example: permutation optimization
#' seed=0
#' #distance
#' dF <- distancePermutationHamming
#' #mutation
#' mF <- mutationPermutationSwap
#' #recombination
#' rF <- recombinationPermutationCycleCrossover
#' #creation
#' cF <- function()sample(5)
#' #objective function
#' lF <- landscapeGeneratorUNI(1:5,dF)
#' #start optimization
#' set.seed(seed)
#' res <- optimEA(,lF,list(creationFunction=cF,mutationFunction=mF,recombinationFunction=rF,
#' popsize=6,budget=60,targetY=0,verbosity=1,
#' vectorized=TRUE)) ##target function is "vectorized", expects list as input
#' res$xbest
#' #Second example: binary string optimization
#' #number of bits
#' N <- 50
#' #target function (simple example)
#' f <- function(x){
#' sum(x)
#' }
#' #function to create random Individuals
#' cf <- function(){
#' sample(c(FALSE,TRUE),N,replace=TRUE)
#' }
#' #control list
#' cntrl <- list(
#' budget = 100,
#' popsize = 5,
#' creationFunction = cf,
#' vectorized = FALSE, #set to TRUE if f evaluates a list of individuals
#' recombinationFunction = recombinationBinary2Point,
#' recombinationRate = 0.1,
#' mutationFunction = mutationBinaryBitFlip,
#' parameters=list(mutationRate = 1/N),
#' archive=FALSE #recommended for larger budgets. do not change.
#' )
#' #start algorithm
#' set.seed(1)
#' res <- optimEA(fun=f,control=cntrl)
#' res$xbest
#' res$ybest
#'
#' @seealso \code{\link{optimCEGO}}, \code{\link{optimRS}}, \code{\link{optim2Opt}}, \code{\link{optimMaxMinDist}}
#'
#' @export
#'
#' @import fastmatch
###################################################################################
optimEA <- function(x=NULL,fun,control=list()){
#default controls:
con<-list(budget = 1000 #default controls:
, popsize = 100
, generations = Inf
, targetY = -Inf
, vectorized=FALSE
, creationFunction = solutionFunctionGeneratorPermutation(6)
, recombinationRate=0.5
, parameters = list() #manually set paramters for recombination and mutation TODO
, mutationFunction = mutationPermutationSwap
, recombinationFunction = recombinationPermutationCycleCrossover
, selection = "tournament" #or "truncation
, tournamentSize = 2
, tournamentProbability = 0.9
, localSearchFunction = NULL
, localSearchRate = 0
, localSearchSettings = list()
, archive = TRUE
, stoppingCriterionFunction = NULL
, verbosity = 0
, plotting = FALSE
, selfAdaptTau = 1/sqrt(2)
, selfAdaptP = 0.5
);
con[names(control)] <- control;
control<-con;
archive <- control$archive
creationFunction <- control$creationFunction
budget <- control$budget
vectorized <- control$vectorized
popsize <- control$popsize
generations <- control$generations
targetY <- control$targetY
tournamentSize <- control$tournamentSize
parameters <- control$parameters
recombinationRate <- control$recombinationRate
recombinationFunction <- control$recombinationFunction
mutationFunction <- control$mutationFunction
localSearchFunction <- control$localSearchFunction
localSearchRate <- control$localSearchRate
localSearchSettings <- control$localSearchSettings
localSearchSettings$vectorized <- vectorized
selection <- control$selection
stoppingCriterionFunction <- control$stoppingCriterionFunction
verbosity <- control$verbosity
plotting <- control$plotting
tournamentProbability <- control$tournamentProbability #probability in the tournament selection
selfAdaption <- control$selfAdaption
selfAdaptTau <- control$selfAdaptTau
selfAdaptP <- control$selfAdaptP
tournamentSize <- max(tournamentSize,1)
#for backwards compatibility only:
if(!is.null( control$mutationParameters))
parameters[names(control$mutationParameters)] <- control$mutationParameters
if(!is.null( control$recombinationParameters))
parameters[names(control$recombinationParameters)] <- control$recombinationParameters
## Create initial population
population <- designRandom(x,creationFunction,popsize)
## Create initial parameters (if self-adaptive)
populationSelfAdapt <- NA
if(!is.null(selfAdaption)){
populationSelfAdapt <- t(replicate(popsize,lapply(lapply(selfAdaption,'[[',"default"),eval)))
#t(replicate(popsize,getDefaults(old)))
types <- sapply(selfAdaption,'[[',"type") #getParamTypes(selfAdaption)
lower <- unlist(sapply(selfAdaption,'[[',"lower")) #getLower(selfAdaption)
upper <- unlist(sapply(selfAdaption,'[[',"upper")) #getUpper(selfAdaption)
values <- lapply(selfAdaption,'[[',"values")
valnotnull <- !sapply(values,is.null)
values <- values[valnotnull]
#values <- sapply(getValues(selfAdaption,dict=list()),unlist,simplify=FALSE)
inum <- types=="numeric"
icat <- types=="discrete"
iint <- types=="integer"
nnum <- sum(inum)
ncat <- sum(icat)
nint <- sum(iint)
}
if(vectorized)
fitness <- fun(population)
else
fitness <- unlist(lapply(population,fun))
count <- popsize
gen <- 1
fitbest <- min(fitness,na.rm=TRUE)
xbest <- population[[which.min(fitness)]]
if(archive){
fithist <- fitness
xhist <- population
}
besthist <- fitbest # initialization for plotting
run <- TRUE
while((count < budget) & (gen < generations) & (fitbest > targetY) & (run)){
gen <- gen+1
## parent selection
if(selection == "tournament"){ #tournament selection
parents <- tournamentSelection(fitness,tournamentSize,tournamentProbability,max(floor(popsize*recombinationRate)*2,2))
}else{ #truncation selection
parents <- rep(order(fitness),2)[1:max(floor(popsize*recombinationRate)*2,2)]
}
## shuffle parents
parents <- sample(parents)
## self-adapt parameters (recombine, apply learning)
if(!is.null(selfAdaption)){
offspringSelfAdapt <- selfAdapt(populationSelfAdapt[parents,],inum,icat,iint,nnum,ncat,nint,lower,upper,values,selfAdaptTau,selfAdaptP) #adapt parameters (learn)
parameters$selfAdapt <- offspringSelfAdapt #get parameters of the offspring individuals
}
## recombine parents
offspring <- recombinationFunction(population[parents],parameters)
## mutate parents
offspring <- mutationFunction(offspring,parameters)
#optional local search
if(!is.null(localSearchFunction) & localSearchRate>0){
if(localSearchRate<1){
subsetsize <- ceiling(length(offspring)*localSearchRate)
offspringsubset <- sample(length(offspring),subsetsize)
}else{
offspringsubset <- 1:length(offspring)
}
evaluated <- rep(FALSE,length(offspring))
tempfitness <- NULL
for(i in offspringsubset){
if(localSearchSettings$budget > (budget-count)) #local search budget exceeds remaining budget
localSearchSettings$budget <- budget-count #set to remaining budget
if(localSearchSettings$budget < 2) #local search budget too small
break
res <- localSearchFunction(x=offspring[i],fun=fun,control=localSearchSettings)
if(archive){ #archive local search results
xhist <- append(xhist,res$x)
fithist <- c(fithist, res$y)
}
offspring[[i]] <- res$xbest
evaluated[i] <- TRUE
tempfitness <- c(tempfitness,res$ybest)
count <- count + res$count #add local search counted evaluations to evaluation counter of main loop.
}
if(any(evaluated)){ #add only the evaluated individuals to the population, the rest is added later. this is for efficiency reasons only.
offspring <- offspring[-evaluated]
offspringLocal <- offspring[evaluated]
population <- c(population, offspringLocal)
if(!is.null(selfAdaption)){
populationSelfAdapt <- rbind(populationSelfAdapt,offspringSelfAdapt[evaluated,])
offspringSelfAdapt <- offspringSelfAdapt[-evaluated,]
}
# remember best
newbest <- min(tempfitness,na.rm=TRUE)
if(newbest < fitbest){
fitbest <- newbest
xbest <- offspringLocal[[which.min(tempfitness)]]
}
fitness <- c(fitness, tempfitness)
}
}
if(length(offspring)>0 & budget > count){
## append offspring to population, but remove duplicates first. duplicates are replaced by random, unique solutions.
offspring <- removeDuplicatesOffspring(population,offspring, creationFunction,duplicated)
newfit <- rep(NA,length(offspring)) # the vector of new fitness values
evaluated <- rep(FALSE,length(offspring)) # the vector of indicators, whether the respective offspring is already evaluated
## if archive available, take fitness from archive
if(archive){
inArchiveIDs <- fmatch(offspring,xhist) #fastmatch package
inArchive <- !is.na(inArchiveIDs)
if(any(inArchive)){
newfit[inArchive] <- fithist[inArchiveIDs[inArchive]]
evaluated[inArchive] <- TRUE
}
}
## evaluate the rest with fun
if(any(!evaluated)){
## remove offspring which violate the budget
evaluateOffspring <- offspring[!evaluated]
possibleEvaluations <- min(budget-count,length(evaluateOffspring)) #number of possible evaluations, given the budget
evaluateOffspring <- evaluateOffspring[1:possibleEvaluations]
#the non-evaluated ones receive NAs.
## evaluate
if(vectorized)
newfit[!evaluated][1:possibleEvaluations] <- fun(evaluateOffspring)
else
newfit[!evaluated][1:possibleEvaluations] <- unlist(lapply(evaluateOffspring,fun))
## save to archive
if(archive){
xhist <- append(xhist,evaluateOffspring)
fithist <- c(fithist, newfit[!evaluated][1:possibleEvaluations])
}
## mark evaluated
evaluated[!evaluated][1:possibleEvaluations] <- TRUE
#update count
count <- count+ length(evaluateOffspring)
}
## append results to population
population <- c(population, offspring[evaluated])
if(!is.null(selfAdaption)){
populationSelfAdapt <- rbind(populationSelfAdapt,offspringSelfAdapt[evaluated,])
}
fitness <- c(fitness, newfit[evaluated])
## remember best
newbest <- min(newfit,na.rm=TRUE)
if(newbest < fitbest){
fitbest <- newbest
xbest <- offspring[[which.min(newfit)]]
}
}
if(length(population)>popsize){
#tournament selection
if(selection == "tournament"){ #tournament selection
popindex <- tournamentSelection(fitness,tournamentSize,tournamentProbability,popsize)
}else{ # truncation selection
popindex <- order(fitness)[1:popsize]
}
population <- population[popindex]
fitness <- fitness[popindex]
if(!is.null(selfAdaption)){
populationSelfAdapt <- populationSelfAdapt[popindex,]
}
}
if(!is.null(stoppingCriterionFunction)) # calculation of additional stopping criteria
run <- stoppingCriterionFunction(population,fitness)
if(plotting){
besthist <- c(besthist,fitbest)
plot(besthist,type="l")
}
if(verbosity > 0){
print(paste("Generations: ",gen," Evaluations: ",count, "Best Fitness: ",fitbest))
}
}
#stopping criteria information for user:
msg <- "Termination message:"
if(!run) #success
msg=paste(msg,"Custom stopping criterion satisfied.")
if(fitbest <= targetY)
msg=paste(msg,"Successfully achieved target fitness.")
else if(count >= budget) #budget exceeded
msg=paste(msg,"Target function evaluation budget depleted.")
else if(gen >= generations) #generation limit exceeded
msg=paste(msg,"Number of generations limit reached.")
if(archive)
return(list(xbest=xbest,ybest=fitbest,x=xhist,y=fithist, count=count, message=msg, population=population, fitness=fitness, populationSelfAdapt= populationSelfAdapt))
else
return(list(xbest=xbest,ybest=fitbest,count=count, message=msg, population=population, fitness=fitness , populationSelfAdapt= populationSelfAdapt))
}
###################################################################################
#' Self-adaption of EA parameters.
#'
#' Learning / self-adaption of parameters of the evolutionary algorithm.
#'
#' @param params parameters to be self-adapted
#' @param inum boolean vector, which parameters are numeric
#' @param icat boolean vector, which parameters are discrete, factors
#' @param iint boolean vector, which parameters are integer
#' @param nnum number of numerical parameters
#' @param ncat number of discrete parameters
#' @param nint number of integer parameters
#' @param lower lower bounds (numeric, integer parameters only)
#' @param upper upper bounds (numeric, integer parameters only)
#' @param values values or levels of the discrete parameters
#'
#' @seealso \code{\link{optimEA}}
#'
#' @export
#' @keywords internal
###################################################################################
selfAdapt <- function(params,inum,icat,iint,nnum,ncat,nint,lower,upper,values,tau,p){
noff <- nrow(params)/2 #number of offspring, assumes 2 parents for each offspring
#tau <- 1/sqrt(2) # global parameter for this. mutation rate of the numeric/integer paremters
#p <- 0.5# global parameter for this. mutationr ate of the categorical parameters.
ainum <- any(inum)
aiint <- any(iint)
aicat <- any(icat)
## first: recombine
if(ainum) ## numerical: intermediate xover
params[1:noff,inum] <- (as.numeric(params[1:noff,inum]) + as.numeric(params[(1:noff)+noff,inum])) / 2
if(aiint) ## integer: round, intermediate
params[1:noff,iint] <- round((as.numeric(params[1:noff,iint]) + as.numeric(params[(1:noff)+noff,iint])) / 2)
if(aicat){ ## discrete: dominant xover
index <- sample(1:(noff*ncat),noff*ncat / 2) #select 50 % of the discrete individuals and parameters, to be taken from parent 2
params[1:noff,icat][index] <- params[(1:noff)+noff,icat][index]
}
params <- params[1:noff,]
## second: mutate the parameters
if(ainum)
params[,inum] <- as.numeric(params[,inum]) * matrix(exp(tau*rnorm(nnum*noff,0,1)),noff,nnum)
if(aiint)
params[,iint] <- round(as.numeric(params[,inum]) * matrix(exp(tau*rnorm(nint*noff,0,1)),noff,nint))
if(aicat){
rand <- matrix(runif(ncat*noff),noff,ncat) #get random number
ind <- rand < p # if larger than 0.5, change strategy parameter
if(any(ind)){
params[,icat][ind] <-sapply(values,FUN=sample,size=noff,replace=TRUE)[ind]
}
}
## repair: fix to lower/upper
if(ainum|aiint){
params[,inum|iint] <- pmax(lower,params[,inum|iint])
params[,inum|iint] <- pmin(upper,params[,inum|iint])
}
params
}
###################################################################################
#' Self-adaptive mutation operator
#'
#' This mutation function selects an operator and mutationRate (provided in parameters$mutationFunctions)
#' based on self-adaptive parameters chosen for each individual separately.
#'
#' @param population List of permutations
#' @param parameters list, contains the available single mutation functions (\code{mutationFunctions}),
#' and a data.frame that collects the chosen function and mutation rate for each individual (\code{selfAdapt}).
#'
#' @seealso \code{\link{optimEA}}, \code{\link{recombinationSelfAdapt}}
#'
#' @export
#'
#' @examples
#' seed=0
#' N=5
#' #distance
#' dF <- distancePermutationHamming
#' #mutation
#' mFs <- c(mutationPermutationSwap,mutationPermutationInterchange,
#' mutationPermutationInsert,mutationPermutationReversal)
#' rFs <- c(recombinationPermutationCycleCrossover,recombinationPermutationOrderCrossover1,
#' recombinationPermutationPositionBased,recombinationPermutationAlternatingPosition)
#' mF <- mutationSelfAdapt
#' selfAdaptiveParameters <- list(
#' mutationRate = list(type="numeric", lower=1/N,upper=1, default=1/N),
#' mutationOperator = list(type="discrete", values=1:4, default=expression(sample(4,1))),
#' #1: swap, 2: interchange, 3: insert, 4: reversal mutation
#' recombinationOperator = list(type="discrete", values=1:4, default=expression(sample(4,1)))
#' #1: CycleX, 2: OrderX, 3: PositionX, 4: AlternatingPosition
#')
#' #recombination
#' rF <- recombinationSelfAdapt
#' #creation
#' cF <- function()sample(N)
#' #objective function
#' lF <- landscapeGeneratorUNI(1:N,dF)
#' #start optimization
#' set.seed(seed)
#' res <- optimEA(,lF,list(parameters=list(mutationFunctions=mFs,recombinationFunctions=rFs),
#' creationFunction=cF,mutationFunction=mF,recombinationFunction=rF,
#' popsize=15,budget=100,targetY=0,verbosity=1,selfAdaption=selfAdaptiveParameters,
#' vectorized=TRUE)) ##target function is "vectorized", expects list as input
#' res$xbest
###################################################################################
mutationSelfAdapt <- function(population,parameters){
mutfuns <- parameters$mutationFunctions
mutfunsi <- mutfuns[as.numeric(parameters$selfAdapt[,"mutationOperator"])]
pars <- parameters$selfAdapt[,"mutationRate"]
population <- sapply(population,list,simplify=FALSE) #make each parameter to list, because required by operators. #TODO: more efficient to have separate functions that are able to deal with single non-list input
population <- mapply(function(f, x, p) unlist(f(x,list(mutationRate=p))), mutfunsi, population,pars,SIMPLIFY=FALSE)
population
}
###################################################################################
#' Self-adaptive recombination operator
#'
#' This recombination function selects an operator (provided in parameters$recombinationFunctions)
#' based on self-adaptive parameters chosen for each individual separately.
#'
#' @param population List of permutations
#' @param parameters list, contains the available single mutation functions (\code{mutationFunctions}),
#' and a data.frame that collects the chosen function and mutation rate for each individual (\code{selfAdapt}).
#'
#' @seealso \code{\link{optimEA}}, \code{\link{mutationSelfAdapt}}
#'
#' @export
###################################################################################
recombinationSelfAdapt <- function(population,parameters){
recfuns <- parameters$recombinationFunctions
recfunsi <- recfuns[as.numeric(parameters$selfAdapt[,"recombinationOperator"])]
n <- length(population)
population <- sapply(population,list,simplify=FALSE) #make each parameter to list, because required by operators. #TODO: more efficient to have separate functions that are able to deal with single non-list input
population <- mapply(function(f, x1, x2) unlist(f(append(x1,x2))), recfunsi, population[1:(n/2)],population[(1+n/2):n],SIMPLIFY=FALSE)
population
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.