Nothing
################################
#### Tuning the alfa in alfa-regression via K-fold cross validation
#### Tibshirani and Tibshirani method
#### Tsagris Michail 11/2015
#### mtsagris@yahoo.gr
#### References: Tsagris Michail (2015)
#### Regression analysis with compositional data containing zero values
#### Chilean Journal of Statistics, 6(2): 47-57
################################
alfareg.tune <- function(y, x, a = seq(0.1, 1, by = 0.1), nfolds = 10, folds = NULL, nc = 1,
seed = NULL, graph = FALSE) {
## y is the compositional data (dependent variable)
## x is the independent variables
## a is a range of values of alpha
## nfolds is the number of folds for the K-fold cross validation
## nc is how many cores you want to use, default value is 2
if ( min(y) == 0 ) a <- a[a>0]
la <- length(a)
n <- dim(y)[1]
ina <- 1:n
x <- model.matrix(y ~., data.frame(x) )
if ( is.null(folds) ) folds <- Compositional::makefolds(ina, nfolds = nfolds,
stratified = FALSE, seed = seed)
nfolds <- length(folds)
if (nc <= 1) {
apa <- proc.time()
kula <- matrix(nrow = nfolds, ncol = la)
for (j in 1:la) {
ytr <- Compositional::alfa(y, a[j])$aff
for (i in 1:nfolds) {
xu <- x[ folds[[ i ]], -1 , drop = FALSE]
yu <- y[ folds[[ i ]], ]
xa <- x[ -folds[[ i ]], -1]
yb <- ytr[ -folds[[ i ]], ]
mod <- Compositional::alfa.reg(yu, xa, a[j], xnew = xu, yb = yb)
yest <- mod$est
kula[i, j] <- 2 * mean(yu * log(yu / yest), na.rm = TRUE)
}
}
kl <- Rfast::colmeans(kula)
opt <- a[ which.min(kl) ]
val <- which.min(kl)
per <- min(kl, na.rm = TRUE)
pera <- Rfast::rowMins(kula, value = TRUE) ## apply(kula, 1, min)
apa <- proc.time() - apa
} else {
apa <- proc.time()
val <- matrix(a, ncol = nc) ## if the length of a is not equal to the
## dimensions of the matrix val a warning message should appear
requireNamespace("doParallel", quietly = TRUE, warn.conflicts = FALSE)
cl <- parallel::makePSOCKcluster(nc)
doParallel::registerDoParallel(cl)
if ( is.null(folds) ) folds <- Compositional::makefolds(ina, nfolds = nfolds,
stratified = FALSE, seed = seed)
kula <- foreach::foreach(j = 1:nc, .combine = cbind, .packages = "Rfast", .export = c("alfa.reg",
"alfa", "helm", "comp.reg", "multivreg", "rowsums", "colmeans", "colVars") ) %dopar% {
ba <- val[, j]
ww <- matrix(nrow = nfolds, ncol = length(ba) )
for ( l in 1:length(ba) ) {
ytr <- Compositional::alfa(y, ba[l])$aff
for (i in 1:nfolds) {
xu <- x[ folds[[ i ]], -1 , drop = FALSE]
yu <- y[ folds[[ i ]], ]
xa <- x[ -folds[[ i ]], -1]
yb <- ytr[ -folds[[ i ]], ]
mod <- Compositional::alfa.reg(yu, xa, ba[l], xnew = xu, yb = yb)
yest <- mod$est
ww[i, l] <- 2 * mean(yu * log(yu / yest), na.rm = TRUE)
}
}
return(ww)
}
parallel::stopCluster(cl)
kula <- kula[, 1:la]
kl <- Rfast::colmeans(kula)
opt <- a[ which.min(kl) ]
val <- which.min(kl)
per <- min(kl, na.rm = TRUE)
pera <- Rfast::rowMins(kula, value = TRUE) ## apply(kula, 1, min)
apa <- proc.time() - apa
}
if ( graph ) {
plot( a, kl, type = 'b', ylim = c( min(kl), max(kl) ), xlab = expression(alpha),
ylab = '2 * Kullback Leibler divergence', cex.lab = 1.2, cex.axis = 1.2, pch = 16,
col = "green", lwd = 2 )
abline(v = a, col = "lightgrey", lty = 2)
abline(h = seq(min(kl), max(kl), length = 10), col = "lightgrey", lty = 2)
}
list(runtime = apa, kula = kula, kl = kl, opt = opt, value = per)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.