R/multinompcr.tune.R

Defines functions multinompcr.tune

Documented in multinompcr.tune

################################
#### Principal components regression for binary and poisson regression
#### Selection of the number of principal components
#### via K-fold cross validation
#### Tsagris Michail 1/2016
#### mtsagris@yahoo.gr
################################
multinompcr.tune <- function(y, x, nfolds = 10, maxk = 10, folds = NULL, ncores = 1, seed = NULL, graph = TRUE) {
  ## y is the UNIVARIATE dependent variable
  ## y is either a binary variable (binary logistic regression)
  ## or a discrete variable (Poisson regression)
  ## x contains the independent variables
  ## fraction denotes the percentage of observations
  ## to be used as the test set
  ## the 1-fraction proportion of the data will be the training set
  ## R is the number of cross validations
  ## if ncores==1, then 1 processor is used, otherwise more are
  ## used (parallel computing)
  if ( !is.numeric(y) )   y <- as.numeric(y)
  n <- dim(x)[1]
  p <- dim(x)[2]
  if ( maxk > p ) maxk <- p  ## just a check
  if ( is.null(folds) )  folds <- Compositional::makefolds(y, nfolds = nfolds,
                                                           stratified = FALSE, seed = seed)
  nfolds <- length(folds)

  if (ncores <= 1) {
    runtime <- proc.time()
    msp <- matrix( nrow = nfolds, ncol = maxk )
    for (vim in 1:nfolds) {
      ytest <- y[ folds[[ vim ]] ]   ## test set dependent vars
      ytrain <- y[ -folds[[ vim ]] ]   ## train set dependent vars
      xtrain <- x[ -folds[[ vim ]], , drop = FALSE]   ## train set independent vars
      xtest <- x[ folds[[ vim ]], , drop = FALSE ]  ## test set independent vars
      vec <- prcomp(xtrain, center = FALSE)$rotation
      z <- xtrain %*% vec  ## PCA scores

      for ( j in 1:maxk) {
        mod <-try( Rfast::multinom.reg(ytrain, z[, 1:j]), silent = TRUE )
        if ( identical( class(mod), "try-error" ) ) {
          est <- NULL
        } else {
          be <- mod$be
          ztest <- cbind(1, xtest %*% vec[, 1:j, drop = FALSE])  ## PCA scores
          es <- cbind(1, exp( ztest %*% be ) )
          est <- es / Rfast::rowsums(es)
          est <- Rfast::rowMaxs(est)
        }
        msp[vim, j] <- mean( est == ytest )
      }  ##  end   for ( j in 1:maxk)
    }  ##  end  for (vim in 1:nfolds)
    runtime <- proc.time() - runtime

  } else {
    runtime <- proc.time()
    requireNamespace("doParallel", quietly = TRUE, warn.conflicts = FALSE)
    cl <- parallel::makePSOCKcluster(ncores)
    doParallel::registerDoParallel(cl)
    er <- numeric(maxk)
    if ( is.null(folds) )  folds <- Compositional::makefolds(y, nfolds = nfolds,
                                                             stratified = FALSE, seed = seed)
      msp <- foreach::foreach(vim = 1:nfolds, .combine = rbind, .packages = "Rfast", 
	         .export = c("multinom.reg", "rowMaxs") ) %dopar% {
      ytest <- y[ folds[[ vim ]] ]  ## test set dependent vars
      ytrain <-  y[ -folds[[ vim ]] ]   ## train set dependent vars
      xtrain <- x[ -folds[[ vim ]], , drop = FALSE]   ## train set independent vars
      xtest <- x[ folds[[ vim ]], , drop = FALSE]  ## test set independent vars
      vec <- prcomp(xtrain, center = FALSE)$rotation
      z <- xtrain %*% vec  ## PCA scores

      for ( j in 1:maxk) {
        mod <- try( Rfast::multinom.reg(ytrain, z[, 1:j]), silent = TRUE )
        if ( identical( class(mod), "try-error" ) ) {
          est <- NULL
        } else {
          be <- mod$be
          ztest <- cbind(1, xtest %*% vec[, 1:j, drop = FALSE])  ## PCA scores
          es <- cbind(1, exp( ztest %*% be ) )
          est <- es / Rfast::rowsums(es)
          est <- Rfast::rowMaxs(est)
        }
        er[j] <- mean( est == ytest )
      }
      return(er)
    }
    parallel::stopCluster(cl)
    runtime <- proc.time() - runtime
  }

  mpd <- Rfast::colmeans(msp)
  if ( graph )  plot(1:maxk, mpd, xlab = "Number of principal components",
                     ylab = "Mean predicted deviance", type = "b", pch = 16,
					           cex.lab = 1.2, cex.axis = 1.2, col = "green")
  abline(v = 1:maxk, col = "lightgrey", lty = 2)
  abline(h = seq(min(mpd), max(mpd), length = 10), col = "lightgrey", lty = 2)

  names(mpd) <- paste("PC", 1:maxk, sep = " ")
  performance <- max(mpd)
  names(performance) <- "MPD"
  list(msp = msp, mpd = mpd, k = which.max(mpd), performance = performance, runtime = runtime)
}

Try the Compositional package in your browser

Any scripts or data that you put into this service are public.

Compositional documentation built on Oct. 9, 2024, 5:10 p.m.