R/multivreg.R

Defines functions multivreg

Documented in multivreg

################################
#### Multivariate regression
#### Tsagris Michail 6/2011
#### mtsagris@yahoo.gr
#### References: Mardia K.V., kent J.T. & Bibby J.M. (1979)
#### Multivariate Analysis p. 318-320. Academic Press
################################
multivreg <- function(y, x, plot = TRUE, xnew = NULL) {
  ## y is the dependent variable and must be a matrix
  ## with at least two columns
  ## x contains the independent variable(s) which have to be
  ## in a matrix format or a vector if you have just one
  n <- dim(y)[1]  ## sample size
  d <- dim(y)[2]  ## dimensionality of y
  x <- as.matrix(x)
  p <- dim(x)[2]  ## dimensionality of x
  mod <- lm(y ~ x)   ## linear regression
  res <- mod$residuals  ## residuals
  s <- Rfast::cova(res) * (n - 1) / (n - p - 1)
  sxx <- Rfast::cova(x)  ## covariance of the independent variables
  dres <- sqrt( Rfast::mahala( res, numeric(d), s ) ) ## Mahalanobis distances
  ## of the residuals
  mx <- Rfast::colmeans(x)  ## mean vector of the independent variales
  dx <- sqrt( Rfast::mahala(x, mx, sxx) )  ## Mahalanobis distances
  ## of the independent variables
  crit.res <- sqrt( qchisq(0.975, d) )
  crit.x <- sqrt( qchisq(0.975, p) )

  if ( plot ) {
    plot( dx, dres, xlim = c(0, max(dx) + 0.5), ylim = c(0, max(dres) + 0.5),
          xlab = "Mahalanobis distance of x", ylab = "Mahalanobis distance of residuals", 
		  cex.lab = 1.2, cex.axis = 1.2 )
    abline(h = crit.res)
    abline(v = crit.x)
  }

  resid.out <- as.vector( which(dres > crit.res) )
  x.leverage <- which(dx > crit.x)
  out.and.lever <- which(dx > crit.x & dres > crit.res)

  est <- NULL
  if ( !is.null(xnew) ) {
    xnew <- cbind(1, xnew)
    est <- xnew %*% mod$coefficients
  }

  moda <- summary(mod)
  suma <- array( dim = c(1 + p, 6, d) )
  r.squared <- numeric(d)
  mse <- deviance(mod)/( n - p - 1 )

  for (i in 1:d) {
    wa <- as.matrix( moda[[i]]$coefficients )
    wa <- cbind( wa, wa[, 1] - qt(0.975, n - p - 1) * mse[i], wa[, 1] + qt(0.975, n - p - 1) * mse[i] )
    colnames(wa)[5:6] <- paste(c(2.5, 97.5), "%", sep = "")
    suma[, , i] <- wa
    r.squared[i] <- as.numeric( moda[[i]]$r.squared )
  }

  if ( is.null(colnames(y)) ) {
    dimnames(suma) <- list( rownames(wa), colnames(wa), paste("Y", 1:d, sep = "") )
    names(r.squared) <- paste("Y", 1:d, sep = "")
  } else {
    dimnames(suma) <- list( rownames(wa), colnames(wa), colnames(y) )
    names(r.squared) <- colnames(y)
  }

  list(suma = suma, r.squared = r.squared, resid.out  = resid.out,
       x.leverage = x.leverage, out = out.and.lever, est = est)
}

Try the Compositional package in your browser

Any scripts or data that you put into this service are public.

Compositional documentation built on Oct. 9, 2024, 5:10 p.m.