R/rmixcomp.R

Defines functions rmixcomp

Documented in rmixcomp

################################
#### Random values simulation from a normal mixture models for compositional data
#### Tsagris Michail 5/2015
#### mtsagris@yahoo.gr
#### References: Ryan P. Browne, Aisha ElSherbiny and
#### Paul D. McNicholas (2015)
#### R package mixture: Mixture Models for Clustering and Classification
################################
rmixcomp <- function(n, prob, mu, sigma, type = "alr") {
  ## n is the sample size
  ## p is a vector with the mixing probabilities
  ## mu is a matrix with with the mean vectors
  ## sigma is an array with the covariance matrices
  p2 <- c(0, cumsum(prob))
  p <- ncol(mu)  ## dimensionality of the data
  u <- Rfast2::Runif(n)
  g <- nrow(mu)  ## how many clusters are there
  ina <- as.numeric( cut(u, breaks = p2) )  ## the cluster of each observation
  ina <- sort(ina)
  nu <- as.vector( table(ina) )  ## frequency table of each cluster
  y <- array( dim = c(n, p, g) )
  for (j in 1:g)  y[1:nu[j], , j] <- Rfast::rmvnorm( nu[j], mu[j, ], sigma[ , , j])
  x <- y[1:nu[1], , 1]
  for (j in 2:g)  x <- rbind(x, y[1:nu[j], , j])

  if (type == "alr") {
    x1 <- cbind(1, exp(x) )
    x <- x1 / Rfast::rowsums(x1)
  } else {
    x1 <- tcrossprod( x, Compositional::helm( p + 1) )
    x2 <- exp(x1)
    x <- x2 / Rfast::rowsums( x2 )
  }
  ## x is the simulated data
  ## data come from the first cluster, then from the second and so on
  list(id = ina, x = x)
}

Try the Compositional package in your browser

Any scripts or data that you put into this service are public.

Compositional documentation built on Oct. 9, 2024, 5:10 p.m.