CopulaREMADA | R Documentation |
For copula mixed models for diagnostic test accuracy studies numerical evaluation of the MLE is easily done with the following steps:
1. Calculate Gauss-Legendre quadrature points
gl$nodes
and weights gl$weights
.
2. Convert from independent uniform quadrature points to dependent uniform quadrature points that have distribution 'cop'.
The inverse of the conditional distribution qcondcop
corresponding to the copula 'cop' is used to achieve this.
3. Numerically evaluate the joint probability mass function with the bivariate integral in a double sum.
With Gauss-Legendre quadrature, the same nodes and weights
are used for different functions;
this helps in yielding smooth numerical derivatives for numerical optimization via quasi-Newton.
Our comparisons show that n_q=15
is adequate with good precision to at least at four decimal places.
CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcond,tau2par)
CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcond,tau2par)
countermonotonicCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid)
countermonotonicCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid)
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing two matrices with the rows of the output matrix x are copies of the vector |
qcond |
function for the inverse of conditional copula cdf |
tau2par |
function for maping Kendall's tau to copula parameter |
A list containing the following components:
minimum |
the value of the estimated minimum of the negative log-likelihood |
estimate |
the MLE |
gradient |
the gradient at the estimated minimum of of the negative log-likelihood |
hessian |
the hessian at the estimated minimum of the negative log-likelihood |
code |
an integer indicating why the optimization process terminated |
iterations |
the number of iterations performed |
For more details see nlm
Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842–3865. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.6595")}.
rCopulaREMADA
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)
data(LAG)
attach(LAG)
c270est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
detach(LAG)
data(MRI)
attach(MRI)
c270est.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
detach(MRI)
data(CT)
attach(CT)
est.n=countermonotonicCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid)
est.b=countermonotonicCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid)
detach(CT)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.