mutinomVineCopulaREMADA | R Documentation |
The estimated parameters can be obtained by using a quasi-Newton method applied to the logarithm of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximization process.
multinomVineCopulaREMADA.norm(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
multinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
tmultinomVineCopulaREMADA.norm(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,
qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
tmultinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,
qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
NEP |
the number of non-evaluable positives in the presence of non-evaluable subjects |
NEN |
the number of non-evaluable negatives in the presence of non-evaluable subjects |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing 4-dimensional arrays. |
qcond1 |
function for the inverse conditional copula cdf at the (1,2) and (3,4) bivariate margin |
pcond1 |
function for the conditional copula cdf at the (1,2) and (3,4) bivariate margin |
tau2par1 |
function for maping Kendall's tau at the (1,2) and (3,4) bivariate margin to copula parameter |
qcond2 |
function for the inverse conditional copula cdf at the (2,3) bivariate margin |
pcond2 |
function for the conditional copula cdf at the (2,3) bivariate margin |
tau2par2 |
function for maping Kendall's tau at the (2,3) bivariate margin to copula parameter |
A list containing the following components:
minimum |
the value of the estimated minimum of the negative log-likelihood |
estimate |
the MLE |
gradient |
the gradient at the estimated minimum of of the negative log-likelihood |
hessian |
the hessian at the estimated minimum of the negative log-likelihood |
code |
an integer indicating why the optimization process terminated |
iterations |
the number of iterations performed |
For more details see nlm
Nikoloulopoulos, A.K. (2020) A multinomial quadrivariate D-vine copula mixed model for diagnostic studies meta-analysis in the presence of non-evaluable subjects. Statistical Methods in Medical Research, 29 (10), 2988–3005. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0962280220913898")}.
rmultinomVineCopulaREMADA
nq=15
gl=gauss.quad.prob(nq,"uniform")
data(mgrid15)
data(MK2016)
attach(MK2016)
out=tmultinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid15,qcondcln180,pcondcln180,tau2par.cln180,
qcondcln90,pcondcln90,tau2par.cln90)
detach(MK2016)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.