vine.vuong | R Documentation |
Vuong (1989)'s test for the comparison of non-nested vine copula mixed models for diagnostic test accuaracy studies. It shows if a vine copula mixed model provides better fit than the standard GLMM. We compute the Vuong's test with Model 1 being the vine copula mixed model with BVN copula and normal margins, i.e., the standard GLMM.
vine.vuong.beta(qcondcop12,qcondcop13,qcondcop23,
tau2par12,tau2par13,tau2par23,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
vine.vuong.norm(qcondcop12,qcondcop13,qcondcop23,
tau2par12,tau2par13,tau2par23,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
tvine.vuong.beta(qcondcop12,qcondcop13,
tau2par12,tau2par13,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
tvine.vuong.norm(qcondcop12,qcondcop13,
tau2par12,tau2par13,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
tvine2.vuong.beta(qcondcop12,qcondcop13,
tau2par12,tau2par13,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
tvine2.vuong.norm(qcondcop12,qcondcop13,
tau2par12,tau2par13,param1,param2,TP,FN,FP,TN,gl,mgrid,NEP,NEN)
qcondcop12 |
function for the inverse of conditional copula cdf at the (1,2) bivariate margin for Model 2 |
qcondcop13 |
function for the inverse of conditional copula cdf at the (1,3) bivariate margin for Model 2 |
qcondcop23 |
function for the inverse of conditional copula cdf at the (2,3|1) bivariate margin for Model 2 |
tau2par12 |
function for maping Kendall's tau at the (1,2) bivariate margin to copula parameter for Model 2 |
tau2par13 |
function for maping Kendall's tau at the (1,3) bivariate margin to copula parameter for Model 2 |
tau2par23 |
function for maping Kendall's tau at the (2,3|1) bivariate margin to the conditional copula parameter for Model 2 |
param1 |
parameters for the Model 1. i.e., the GLMM |
param2 |
parameters for the Model 2 |
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing three-dimensional arrays |
NEP |
the number of non-evaluable positives in the presence of non-evaluable subjects |
NEN |
the number of non-evaluable negatives in the presence of non-evaluable subjects |
A list containing the following components:
z |
the test statistic |
p-value |
the |
Nikoloulopoulos, A.K. (2017) A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence. Statistical Methods in Medical Research, 26, 2270–2286. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0962280215596769")}.
Nikoloulopoulos, A.K. (2020) An extended trivariate vine copula mixed model for meta-analysis of diagnostic studies in the presence of non-evaluable outcomes. The International Journal of Biostatistics, 16(2). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1515/ijb-2019-0107")}.
Vuong Q.H. (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.
CopulaREMADA
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid=meshgrid(gl$n,gl$n,gl$n,nargout=3)
data(betaDG)
attach(betaDG)
#nest.n2=VineCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,
#qcondbvn,qcondbvn,qcondbvn,
#tau2par.bvn,tau2par.bvn,tau2par.bvn)
nest.n2.est= #nest.n2$e
c(0.87186926, 0.13696066, 0.70614956, 0.69152133,
0.51780203, 0.70883558, -0.41354870,0.07701287, -0.12111253)
#c090est.b2=VineCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,
#qcondcln90,qcondcln,qcondcln90,tau2par.cln90,tau2par.cln,tau2par.cln90)
c090est.b2.est= #c090est.b2$e
c(0.85528463, 0.14667571, 0.68321231, 0.04897466,
0.02776290, 0.08561436, -0.34639172, 0.04621924, -0.21627977)
c090vuong.b2=vine.vuong.beta(qcondcln90,qcondcln,qcondcln90,
tau2par.cln90,tau2par.cln,tau2par.cln90,
nest.n2.est,c090est.b2.est,TP,FN,FP,TN,gl,mgrid)
c090vuong.b2
detach(betaDG)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.