SROC | R Documentation |
Summary receiver operating characteristic (SROC) curves are demonstrated for the proposed models through quantile regression techniques and different characterizations of the estimated bivariate random effects distribution
SROC.norm(param,dcop,qcondcop,tau2par,TP,FN,FP,TN,
points=TRUE,curves=TRUE,
NEP=rep(0,length(TP)),NEN=rep(0,length(TP)))
SROC.beta(param,dcop,qcondcop,tau2par,TP,FN,FP,TN,
points=TRUE,curves=TRUE,
NEP=rep(0,length(TP)),NEN=rep(0,length(TP)))
SROC(param.beta,param.normal,TP,FN,FP,TN,
NEP=rep(0,length(TP)),NEN=rep(0,length(TP)))
param |
A vector with the sensitivities, specifities, variabilities and Kendall's tau value (the latter only for |
param.beta |
A vector with the sensitivity, specifity and variabilities of the countermonotonic CopulaREMADA with beta margins |
param.normal |
A vector with the sensitivity, specifity and variabilities of the countermonotonic CopulaREMADA with normal margins |
dcop |
function for copula density |
qcondcop |
function for the inverse of conditional copula cdf |
tau2par |
function for maping Kendall's tau to copula parameter |
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
points |
logical: print individual studies |
curves |
logical: print quantile regression curves |
NEP |
the number of non-evaluable positives in the presence of non-evaluable subjects |
NEN |
the number of non-evaluable negatives in the presence of non-evaluable subjects |
Summary receiver operating characteristic curves
Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842–3865. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.6595")}.
CopulaREMADA
rCopulaREMADA
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)
data(telomerase)
attach(telomerase)
est.n=countermonotonicCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid)
est.b=countermonotonicCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid)
SROC(est.b$e,est.n$e,TP,FN,FP,TN)
detach(telomerase)
data(LAG)
attach(LAG)
c180est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln180,tau2par.cln180)
SROC.beta(c180est.b$e,dcln180,qcondcln180,tau2par.cln180,TP,FN,FP,TN)
detach(LAG)
data(MRI)
attach(MRI)
c270est.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
SROC.norm(c270est.n$e,dcln270,qcondcln270,tau2par.cln270,TP,FN,FP,TN)
detach(MRI)
data(MK2016)
attach(MK2016)
p=c(0.898745016,0.766105342,0.059168715,0.109217888)
g=c(0.090270947,0.079469009,0.367463579,0.154976269)
taus=c(0.82050793,-0.51867629,0.26457961)
SROC.beta(c(p[1:2],g[1:2],taus[1]),
dcln180,qcondcln180,tau2par.cln180,
TP,FN,FP,TN,points=TRUE,curves=TRUE,NEP,NEN)
detach(MK2016)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.