rCopulaREMADA: Simulation from copula mixed models for diagnostic test...

rCopulaREMADAR Documentation

Simulation from copula mixed models for diagnostic test accuaracy studies

Description

To simulate the data we have used the following steps:

1. Simulate the study size n from a shifted gamma distribution with parameters \alpha=1.2,\beta=0.01,lag=30 and round off to the nearest integer.

2. Simulate (u_1,u_2) from a parametric family of copulas 'cop'.

3. Convert to beta realizations or normal realizations.

4. Draw the number of diseased n_1 from a B(n,0.43) distribution.

5. Set n_2=n-n_1, y_j=n_jx_j and then round y_j for j=1,2.

Usage

rCopulaREMADA.norm(N,p,si,tau,rcop,tau2par)
rCopulaREMADA.beta(N,p,g,tau,rcop,tau2par) 

Arguments

N

sample size

p

Pair (\pi_1,\pi_2) of sensitivity/specificity

si

Pair (\sigma_1,\sigma_2) of variability; normal margins

g

Pair (\gamma_1,\gamma_2) of variability; beta margins

tau

Kendall's tau value

rcop

function for copula generation

tau2par

function for mapping from Kendall's tau to copula parameter

Value

A list containing the following simulated components:

TP

the number of true positives

FN

the number of false negatives

FP

the number of false positives

TN

the number of true negatives

References

Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842–3865. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.6595")}.

See Also

CopulaREMADA rcop

Examples

nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)

N=20
tau=-0.5
p=c(0.7,0.9)
g=c(0.2,0.1)
simDat=rCopulaREMADA.beta(N,p,g,tau,rcln270,tau2par.cln270)
TP=simDat$TP
TN=simDat$TN
FP=simDat$FP
FN=simDat$FN
c270est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)

si=c(2,1)
tau=0.5
simDat=rCopulaREMADA.norm(N,p,si,tau,rcln,tau2par.cln)
TP=simDat$TP
TN=simDat$TN
FP=simDat$FP
FN=simDat$FN
cest.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln,tau2par.cln)

CopulaREMADA documentation built on Oct. 18, 2024, 1:08 a.m.