rCopulaREMADA | R Documentation |
To simulate the data we have used the following steps:
1. Simulate the study size n
from a shifted gamma distribution with parameters \alpha=1.2,\beta=0.01,lag=30
and round off to the nearest integer.
2. Simulate (u_1,u_2)
from a parametric family of copulas 'cop'.
3. Convert to beta realizations or normal realizations.
4. Draw the number of diseased n_1
from a B(n,0.43)
distribution.
5. Set n_2=n-n_1, y_j=n_jx_j
and then round y_j
for j=1,2
.
rCopulaREMADA.norm(N,p,si,tau,rcop,tau2par)
rCopulaREMADA.beta(N,p,g,tau,rcop,tau2par)
N |
sample size |
p |
Pair |
si |
Pair |
g |
Pair |
tau |
Kendall's tau value |
rcop |
function for copula generation |
tau2par |
function for mapping from Kendall's tau to copula parameter |
A list containing the following simulated components:
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842–3865. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.6595")}.
CopulaREMADA
rcop
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)
N=20
tau=-0.5
p=c(0.7,0.9)
g=c(0.2,0.1)
simDat=rCopulaREMADA.beta(N,p,g,tau,rcln270,tau2par.cln270)
TP=simDat$TP
TN=simDat$TN
FP=simDat$FP
FN=simDat$FN
c270est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
si=c(2,1)
tau=0.5
simDat=rCopulaREMADA.norm(N,p,si,tau,rcln,tau2par.cln)
TP=simDat$TP
TN=simDat$TN
FP=simDat$FP
FN=simDat$FN
cest.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln,tau2par.cln)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.