vuong | R Documentation |
Vuong (1989)'s test for the comparison of non-nested copula mixed models for diagnostic test accuaracy studies. It shows if a copula mixed model provides better fit than the standard GLMM. We compute the Vuong's test with Model 1 being the copula mixed model with BVN copula and normal margins, i.e., the standard GLMM.
vuong.norm(qcond,tau2par,param1,param2,TP,FN,FP,TN,gl,mgrid)
vuong.beta(qcond,tau2par,param1,param2,TP,FN,FP,TN,gl,mgrid)
countermonotonicity.vuong(param1,param2,TP,FN,FP,TN,gl,mgrid)
qcond |
function for conditional copula cdf for Model 2 |
tau2par |
function for maping Kendall's tau to copula parameter for Model 2 |
param1 |
parameters for the Model 1. i.e., the GLMM |
param2 |
parameters for the Model 2 |
TP |
the number of true positives |
FN |
the number of false negatives |
FP |
the number of false positives |
TN |
the number of true negatives |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing two matrices with the rows of the output matrix X are copies of the vector |
A list containing the following components:
z |
the test statistic |
p-value |
the |
Nikoloulopoulos, A.K. (2015) A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Statistics in Medicine, 34, 3842–3865. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.6595")}.
Vuong Q.H. (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57:307–333.
CopulaREMADA
nq=15
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n)
data(MRI)
attach(MRI)
c270est.b=CopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid,qcondcln270,tau2par.cln270)
nest.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondbvn,tau2par.bvn)
c90est.n=CopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid,qcondcln90,tau2par.cln90)
vuong.beta(qcondcln270,tau2par.cln270,nest.n$e,c270est.b$e,TP,FN,FP,TN,gl,mgrid)
vuong.norm(qcondcln90,tau2par.cln90,nest.n$e,c90est.n$e,TP,FN,FP,TN,gl,mgrid)
detach(MRI)
data(CT)
attach(CT)
est.n=countermonotonicCopulaREMADA.norm(TP,FN,FP,TN,gl,mgrid)
est.b=countermonotonicCopulaREMADA.beta(TP,FN,FP,TN,gl,mgrid)
countermonotonicity.vuong(est.n$e,est.b$e,TP,FN,FP,TN,gl,mgrid)
detach(CT)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.