imperfect.trivariateVineCopulaREMADA | R Documentation |
The estimated parameters can be obtained by using a quasi-Newton method applied to the logarithm of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximization process.
imperfect.trivariateVineCopulaREMADA.norm.comprehensive(y11,
y10,y01,y00,gl,mgrid,qcond,tau2par,select.random,start)
imperfect.trivariateVineCopulaREMADA.norm(y11,
y10,y01,y00,gl,mgrid,qcond1,tau2par1,qcond2,tau2par2,select.random,start)
imperfect.trivariateVineCopulaREMADA.beta.comprehensive(y11,
y10,y01,y00,gl,mgrid,qcond,tau2par,select.random,start)
imperfect.trivariateVineCopulaREMADA.beta(y11,
y10,y01,y00,gl,mgrid,qcond1,tau2par1,qcond2,tau2par2,select.random,start)
y11 |
the number of the test results where the index test outcome is positive and the reference test outcome is positive |
y10 |
the number of the test results where the index test outcome is positive and the reference test outcome is negative |
y01 |
the number of the test results where the index test outcome is negative and the reference test outcome is positive |
y00 |
the number of the test results where the index test outcome is negative and the reference test outcome is negative |
gl |
a list containing the components of Gauss-Legendre nodes |
mgrid |
a list containing three-dimensional arrays. Replicates of the quadrature points that produce a 3-dimensional full grid |
select.random |
vector |
qcond |
function for the inverse of conditional copula cdf; choices are |
tau2par |
function for maping Kendall's tau to copula parameter; choices are |
qcond1 |
function for the inverse of conditional copula cdf for the |
tau2par1 |
function for maping Kendall's tau to copula parameter for the |
qcond2 |
function for the inverse of conditional copula cdf for the |
tau2par2 |
function for maping Kendall's tau to copula parameter for the |
start |
starting values for the parameters |
A list containing the following components:
LogLikelihood |
the maximized log-likelihood |
Estimates |
the MLE |
SE |
the standard errors |
Nikoloulopoulos, A.K. (2024) Vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard. Submitted.
data(Pap)
attach(Pap)
nq=30
gl=gauss.quad.prob(nq,"uniform")
mgrid<- meshgrid(gl$n,gl$n,gl$n,nargout=3)
tau2par=tau2par.bvn
qcond=qcondbvn
select.random=c(1,2,4)
start=c(rep(0.6,5),rep(0.5,3),c(0.01,-0.01))
est.norm=imperfect.trivariateVineCopulaREMADA.norm.comprehensive(y11,y10,
y01,y00,gl,mgrid,qcond,tau2par,select.random,start)
tau2par1=tau2par.cln180
qcond1=qcondcln180
tau2par2=tau2par.cln270
qcond2=qcondcln270
est.norm.cln=imperfect.trivariateVineCopulaREMADA.norm(y11,y10,y01,
y00,gl,mgrid,qcond1,tau2par1,qcond2,tau2par2,select.random,start)
start=c(rep(0.6,5),rep(0.05,3),c(0.1,-0.1))
est.beta=imperfect.trivariateVineCopulaREMADA.beta.comprehensive(y11,y10,y01,y00,
gl,mgrid,qcond,tau2par,select.random,start)
est.beta.cln=imperfect.trivariateVineCopulaREMADA.beta(y11,y10,y01,y00,
gl,mgrid,qcond1,tau2par1,qcond2,tau2par2,select.random,start)
detach(Pap)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.