Nothing
LFDA<- function(x, y, r,prior = proportions, CV=FALSE,usekernel = TRUE, fL = 0,tol,kernel="gaussian",metric = c("orthonormalized","plain","weighted"),knn = 5,...) {
requireNamespace("lfda")
Y=as.factor(y)
cl <- match.call()
tol=tol
metric <- match.arg(metric) # the type of the transforming matrix (metric)
x=as.matrix(x)
p <- ncol(x)
n <- nrow(x) # number of samples
if(n != length(y))
stop("nrow(x) and length(y) are different")
g <- as.factor(y)
lev <- lev1 <- levels(g)
counts <- as.vector(table(g))
if(!missing(prior)) {
if(any(prior < 0) || round(sum(prior), 5) != 1) stop("invalid 'prior'")
if(length(prior) != nlevels(g)) stop("'prior' is of incorrect length")
prior <- prior[counts > 0L]
}
if(any(counts == 0L)) {
empty <- lev[counts == 0L]
warning(sprintf(ngettext(length(empty),
"group %s is empty",
"groups %s are empty"),
paste(empty, collapse = " ")), domain = NA)
lev1 <- lev[counts > 0L]
g <- factor(g, levels = lev1)
counts <- as.vector(table(g))
}
proportions <- counts/n
ng <- length(proportions)
names(prior) <- names(counts) <- lev1
group.means <- tapply(c(x), list(rep(g, p), col(x)), mean)
### new section from local da
x <- t(as.matrix(x)) # transpose of original samples
y <- t(as.matrix(y)) # transpose of original class labels
d <- nrow(x) # number of predictors
if(is.null(r)) r <- d # if no dimension reduction requested, set r to d
tSb <- mat.or.vec(d, d) # initialize between-class scatter matrix (to be maximized)
tSw <- mat.or.vec(d, d) # initialize within-class scatter matrix (to be minimized)
# compute the optimal scatter matrices in a classwise manner
for (i in unique(as.vector(t(y)))) {
Xc <- x[, y == i] # data for this class
nc <- ncol(Xc)
# determine local scaling for locality-preserving projection
Xc2 <- t(as.matrix(colSums(Xc^2))) ## square of each class for each variable (predictor)
# calculate the distance, using a self-defined repmat function that's the same
# as repmat() in Matlab ,repmat is basically a X %x% Y, nc X nc matrix
distance2 <- repmat(Xc2, nc, 1) + repmat(t(Xc2), 1, nc) - 2 * t(Xc) %*% Xc
# Get affinity matrix, using knn, which is nearest neibger distancethe larger the element in the matrix, the closer two data points are
A <- getAffinityMatrix(distance2, knn, nc)
Xc1 <- as.matrix(rowSums(Xc))
G <- Xc %*% (repmat(as.matrix(colSums(A)), 1, d) * t(Xc)) - Xc %*% A %*% t(Xc)
tSb <- tSb + (G/n) + Xc %*% t(Xc) * (1 - nc/n) + Xc1 %*% (t(Xc1)/n)
tSw <- tSw + G/nc
}
X1 <- as.matrix(rowSums(x))
tSb <- tSb - X1 %*% t(X1)/n - tSw
tSb <- (tSb + t(tSb))/2 # final between-class cluster matrix
tSw <- (tSw + t(tSw))/2 # final within-class cluster matrix
#A "scatter matrix" is just a covariance matrix without devidedness by sample_size-1.
# find generalized eigenvalues and normalized eigenvectors of the problem
if (r == d) {
# without dimensionality reduction
eigTmp <- eigen(ginv(tSw) %*% tSb) # eigenvectors here are normalized, here we used ginv from MASS package to subsitute solve because solve can not solve singular values
} else {
# dimensionality reduction (select only the r largest eigenvalues of the problem)
eigTmp <- suppressWarnings(rARPACK::eigs(A = ginv(tSw) %*% tSb, k = r, which = 'LM')) # r largest magnitude eigenvalues
}
eigVec <- Re(eigTmp$vectors) # the raw transforming matrix
eigVal <- as.matrix(Re(eigTmp$values))
# options to require a particular type of returned transform matrix
# transforming matrix (do not change the "=" in the switch statement)
Tr <- getMetricOfType(metric, eigVec, eigVal, d)
# scaling is equal to Tr
Z <- t(t(Tr) %*% x)
# require(klaR) ## FOR Nativebaye function
bayes_judgement=Mabayes(Z,Y,var.equal = FALSE,tol=tol)
bayes=klaR::NaiveBayes(as.data.frame(Z), Y, prior=prior, usekernel=usekernel, fL = 0,kernel=kernel,...)
bayes_assigment=predict.NaiveBayes(bayes)
# group.means1 <- tapply(c(Z), list(rep(g, p), col(Z)), mean)
if(CV) {
x <- t(t(Tr) %*% x) # transformed data Z
dm <- group.means %*% Tr
### K is deternmined from n.pc, ng is number of gropus
K = ng
dist <- matrix(0, n, ng) # n row and ng col
## dev matrix
for(i in 1L:ng) {
dev <- x - matrix(dm[i, ], n, r, byrow = TRUE)
dist[, i] <- rowSums(dev^2)### dis or devation of each class
}
ind <- cbind(1L:n, g) ### give the order number (sequence) and group(class )
nc <- counts[g] ## number of class
cc <- nc/((nc-1)*(n-K)) ### proportation of eac
dist2 <- dist
for(i in 1L:ng) {
dev <- x - matrix(dm[i, ], n, r, byrow = TRUE)
dev2 <- x - dm[g, ]
tmp <- rowSums(dev*dev2)
dist[, i] <- (n-1L-K)/(n-K) * (dist2[, i] + cc*tmp^2/(1 - cc*dist2[ind]))
}
### dist should be discriminat function
dist[ind] <- dist2[ind] * (n-1L-K)/(n-K) * (nc/(nc-1))^2 /(1 - cc*dist2[ind])
dist <- 0.5 * dist - matrix(log(prior), n, ng, byrow = TRUE) # proboloty of discrim density function
dist <- exp(-(dist - min(dist, na.rm = TRUE))) #### proporbility of pi this is distribution Normal distribution function
cla <- factor(lev1[max.col(dist)], levels = lev)
## calculate distance is
# deltaTrain[,i]=deltaTrain[,i]-0.5*t(Mu_k[,i])%*%sigmaMinus1%*%Mu_k[,i]+log(Pi_k[i])
## convert to posterior probabilities
posterior <- dist/drop(dist %*% rep(1, length(prior)))
dimnames(posterior) <- list(rownames(x), lev1)
return(CV=list(prior=prior,tol=tol,usekernel=usekernel,fL=fL,kernel=kernel,counts = counts, means = group.means, Y=Y,post_class = cla,lev=lev,bayes=bayes,bayes_judgement=bayes_judgement,bayes_assigment=bayes_assigment,lev=lev, posterior = posterior,N=n,call=cl,Z=Z,T=Tr))
}
xbar <- colSums(prior %*% group.means)
fac <-1/(ng - 1)
X <- sqrt((n * prior)*fac) * scale(group.means, center = xbar, scale = FALSE) %*% Tr
X.s <- svd(X, nu = 0L)
# rank <- sum(X.s$d > tol * X.s$d[1L])
#rank=r-1
#T_lda <- Tr %*% X.s$v[, 1L:rank]
# if(is.null(dimnames(x)))
# dimnames(T_lda) <- list(NULL, paste("LD", 1L:rank, sep = ""))
#else {
# dimnames(T_lda) <- list(colnames(x), paste("LD", 1L:rank, sep = ""))
#dimnames(group.means)[[2L]] <- colnames(x)
# }
cl <- match.call()
#svd = X.s$d[1L:rank]
#PLD1=svd[1]^2/sum(svd^2)
#PLD2=svd[2]^2/sum(svd^2)
cl[[1L]] <- as.name("LFAD")
structure(list(prior = prior,tol=tol,usekernel=usekernel,fL=fL,kernel=kernel,bayes=bayes,bayes_judgement=bayes_judgement, bayes_assigment=bayes_assigment,counts = counts, means = group.means, Z=Z, Tr=Tr,lev = lev, N = n,Y=Y, call = cl),
class = "LFDA")
}
dkernel<-function(x, kernel=stats::density(x), interpolate=FALSE, ...)
{
foo<-function(x,kernel,n)
{
if (x <= kernel$x[1]) return(kernel$y[1])
else if (x >= kernel$x[n]) return(kernel$y[n])
else
{
pos<-which.min((kernel$x-x)^2)
if (kernel$x[pos]>x) return(mean(c(kernel$y[pos],kernel$y[(pos-1)])))
else return(mean(c(kernel$y[pos],kernel$y[(pos+1)])))
}
}
n<-length(kernel$x)
if (interpolate) y<-sapply(x,foo,kernel=kernel,n=n)
else y<-sapply(x,FUN=function(y){kernel$y[(which.min((kernel$x-y)^2))]})
return(y)
}
predict.NaiveBayes <- function (object, newdata, threshold = 0.001, ...)
{
if (missing(newdata))
newdata <- object$x
if (sum(is.element(colnames(newdata), object$varnames)) < length(object$varnames))
stop("Not all variable names used in object found in newdata")
## (both colnames & varnames are given) & (varnames is a subset of colnames):
newdata <- data.frame(newdata[, object$varnames])
nattribs <- ncol(newdata)
islogical <- sapply(newdata, is.logical)
isnumeric <- sapply(newdata, is.numeric)
# L <- sapply(
# 1:nrow(newdata),
# function(i)
# {
# ndata <- as.numeric(newdata[i, ])
# L <- sapply(
# 1:nattribs,
# function(v)
# {
# nd <- ndata[v]
# if (is.na(nd))
# {
# rep(1, length(object$apriori))
# } else {
# prob <- if (isnumeric[v])
# {
# msd <- object$tables[[v]]
# if (object$usekernel) sapply(
# msd,
# FUN = function(y)
# {
# dkernel(x = nd, kernel = y, ...)
# })
# else dnorm(nd, msd[, 1], msd[, 2])
# }
# else object$tables[[v]][, nd]
#
# prob
# }
# }
# )
#
# L <- ifelse(L < threshold, threshold, L)
# # normalize by p(x) = p(x_1|y) + ... + p(x_p|y)
# Lnorm <- apply(L, 2, function(x, y) x/sum(x * y), y = as.vector(object$apriori))
# # get product
# Lprod <- apply(Lnorm, 1, prod)
# # normalize by posterior
# Lpost <- object$apriori * Lprod
# Lpost <- Lpost/sum(Lpost)
# Lpost
# }
# )
newdata <- data.matrix(newdata)
Lfoo <- function(i) {
tempfoo <- function(v) {
nd <- ndata[v]
if (is.na(nd))
return(rep(1, length(object$apriori)))
prob <-
if (isnumeric[v]) {
msd <- object$tables[[v]]
if (object$usekernel)
sapply(msd, FUN = function(y)
dkernel(x = nd, kernel = y, ...))
else stats::dnorm(nd, msd[, 1], msd[, 2])
} else if (islogical[v]) {
object$tables[[v]][, nd + 1]
} else {
object$tables[[v]][, nd]
}
prob[prob == 0] <- threshold
return(prob)
}
ndata <- newdata[i, ]
tempres <- log(sapply(1:nattribs, tempfoo))
L <- log(object$apriori) + rowSums(tempres)
# L <- exp(L)
# L/sum(L)
if(isTRUE(all.equal(sum(exp(L)), 0)))
warning("Numerical 0 probability for all classes with observation ", i)
L
}
L <- sapply(1:nrow(newdata), Lfoo)
classdach <- factor(object$levels[apply(L, 2, which.max)],
levels = object$levels)
posterior <- t(apply(exp(L), 2, function(x) x/sum(x)))
# print(str(posterior))
colnames(posterior) <- object$levels
rownames(posterior) <- names(classdach) <- rownames(newdata)
return(list(class = classdach, posterior = posterior))
}
#' @export
predict.LFDA=function(object,prior=NULL,testData,...){
tol=object$tol
testData=as.matrix(testData)
Z=object$Z
Y=object$Y
Trans=as.matrix(object$T)
Z2=testData %*% Trans
if (is.null(prior)==TRUE){
prior=object$prior
}
usekernel=object$usekernel
fL=object$fL
kernel=object$kernel
# require(klaR) ## FOR Nativebaye function
bayes_jud_pred=Mabayes(TrnX=Z,TrnG=Y,TstX = Z2,var.equal = FALSE,tol=tol)
bayes=klaR::NaiveBayes(as.data.frame(Z), Y, prior, usekernel, fL,kernel,bw = "nrd0", adjust = 1,weights = NULL, window = kernel, give.Rkern = FALSE,...)
Nbayes_assig_pred=predict.NaiveBayes(bayes,newdata=as.data.frame(Z2))
ng=length(object$lev)
means <- colSums(prior*object$means)
scaling <- object$scaling
x <-Z2
dm <- scale(object$means, center = means, scale = FALSE) %*% Trans
dimen <- length(object$svd)
N <- object$N
dm <- dm[, 1L:dimen, drop = FALSE]
dist <- matrix(0.5 * rowSums(dm^2) - log(prior), nrow(x),
length(prior), byrow = TRUE) - x[, 1L:dimen, drop=FALSE] %*% t(dm)
dist <- exp( -(dist - apply(dist, 1L, min, na.rm=TRUE)))
posterior <- dist / drop(dist %*% rep(1, length(prior)))
nm <- names(object$prior)
cl <- factor(nm[max.col(posterior)], levels = object$lev)
dimnames(posterior) <- list(rownames(x), nm)
list(class = cl, posterior = posterior, x = x[, 1L:dimen, drop = FALSE],bayes_jud_pred=bayes_jud_pred,Nbayes_assig_pred=Nbayes_assig_pred)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.