Nothing
# =====================================================
# Function that obtains a statistic of centrality of a
# variable, given a sample of values.
# If the variable is numeric it returns de median, if it
# is a factor it returns the mode. In other cases it
# tries to convert to a factor and then returns the mode.
# =====================================================
# Luis Torgo, Jan 2009
# =====================================================
centralValue <- function(x, ws=NULL) {
x <- unlist(x) # because of dplyr structures not dropping (errors with dat[,i])
if (is.numeric(x)) {
if (is.null(ws)) median(x,na.rm=TRUE)
else if ((s <- sum(ws)) > 0) sum(x*(ws/s)) else NA
} else {
x <- as.factor(x)
if (is.null(ws)) levels(x)[which.max(table(x))]
else levels(x)[which.max(aggregate(ws,list(x),sum)[,2])]
}
}
# =====================================================
# Small utility function to obtain the number of the rows
# in a data frame that have either a "large" number of
# unknown values.
# "Large" can be defined either as a proportion of the
# number of columns or as the number in itself.
# =====================================================
# Luis Torgo, Mar 2009, Mar 2011
# =====================================================
manyNAs <- function(data,nORp=0.2) {
n <- if (nORp < 1) as.integer(nORp*ncol(data)) else round(nORp,0)
idxs <- which(apply(data,1,function(x) sum(is.na(x))) > n)
if (!length(idxs)) warning('Empty index generated, no rows with many NAs. Undesirable effects may be caused if indexing a data frame with this.')
idxs
}
# =====================================================
# Function that fills in all unknowns using the statistic
# of centrality of the respective column.
# This statistic is either the median for numeric columns
# or the mode for nominal variables.
# =====================================================
# Luis Torgo, Mar 2009
# =====================================================
centralImputation <- function(data) {
for(i in seq(ncol(data)))
if (any(idx <- is.na(data[,i])))
data[idx,i] <- centralValue(data[,i])
data
}
# =====================================================
# Function that fills in all unknowns using the k Nearest
# Neighbours of each case with unknows.
# By default it uses the values of the neighbours and
# obtains an weighted (by the distance to the case) average
# of their values to fill in the unknows.
# If meth='median' it uses the median/most frequent value,
# instead.
# =====================================================
# Luis Torgo, Mar 2009, Nov 2011
# =====================================================
knnImputation <- function(data,k=10,scale=TRUE,meth='weighAvg',distData=NULL) {
n <- nrow(data)
if (!is.null(distData)) {
distInit <- n+1
data <- rbind(data,distData)
} else distInit <- 1
N <- nrow(data)
ncol <- ncol(data)
##nomAttrs <- rep(F,ncol)
##for(i in seq(ncol)) nomAttrs[i] <- is.factor(data[,i])
##nomAttrs <- which(nomAttrs)
##contAttrs <- setdiff(seq(ncol),nomAttrs)
contAttrs <- which(vapply(data,dplyr::type_sum,character(1)) %in% c("dbl","int"))
nomAttrs <- setdiff(seq.int(ncol),contAttrs)
hasNom <- length(nomAttrs)
dm <- data
if (scale) dm[,contAttrs] <- scale(dm[,contAttrs])
if (hasNom)
for(i in nomAttrs) dm[[i]] <- as.integer(dm[[i]])
dm <- as.matrix(dm)
nas <- which(!complete.cases(dm))
if (!is.null(distData)) tgt.nas <- nas[nas <= n]
else tgt.nas <- nas
if (length(tgt.nas) == 0)
warning("No case has missing values. Stopping as there is nothing to do.")
xcomplete <- dm[setdiff(distInit:N,nas),]
if (nrow(xcomplete) < k)
stop("Not sufficient complete cases for computing neighbors.")
for (i in tgt.nas) {
tgtAs <- which(is.na(dm[i,]))
dist <- scale(xcomplete,dm[i,],FALSE)
xnom <- setdiff(nomAttrs,tgtAs)
if (length(xnom)) dist[,xnom] <-ifelse(dist[,xnom]>0,1,dist[,xnom])
dist <- dist[,-tgtAs]
dist <- sqrt(drop(dist^2 %*% rep(1,ncol(dist))))
ks <- order(dist)[seq(k)]
for(j in tgtAs)
if (meth == 'median')
data[i,j] <- centralValue(data[setdiff(distInit:N,nas)[ks],j])
else
data[i,j] <- centralValue(data[setdiff(distInit:N,nas)[ks],j],exp(-dist[ks]))
}
data[1:n,]
}
# ======================================================================
# Function for normalizing the range of values of a continuous variable.
# Taken from the book "Data preparation for data mining" by Dorian Pyle
# (pp. 271-274)
#
# This function ensures all values will be between 0 and 1.
#
# 13/05/2002, Luis Torgo.
# ----------------------------------------------------------------------
# Example :
# SoftMax(algae[,'NO3'])
# the following obtains the transformation just for one value
# SoftMax(45.23,avg=mean(algae[,'NO3'],na.rm=T),std=sd(algae[,'NO3'],na.rm=T))
#
# Note:
# The lambda parameter controls the range of values that gets a linear
# mapping. It represents the number of standard deviations that should be
# included in the linear mapping region (e.g. 1-> 68% of the distribution gets
# linear mapping, while 2-> 95.5%, 3 -> 99.7%, etc.)
SoftMax <- function(x,lambda=2,avg=mean(x,na.rm=T),std=sd(x,na.rm=T))
{
if (is.data.frame(x) | is.array(x)) return(apply(x,2,SoftMax,lambda))
vt <- (x-avg)/(lambda*(std/(2*pi)))
1/(1+exp(-vt))
}
# ======================================================================
# Function for creating an embeded data set from an univariate time series
#
#
# 2016/09/09, Luis Torgo.
# ----------------------------------------------------------------------
#
createEmbedDS <- function(s, emb=4) {
d <- dim(s)
if (!is.null(d) && d[2] > 1) stop("Only applicable to uni-variate time series")
if (emb < 2 || emb > length(s)) stop("Invalid embed size")
e <- embed(s,emb)
colnames(e) <- c("T",paste("T",1:(emb-1),sep="_"))
if (xts::is.xts(s)) return(xts::xts(e,index(s)[emb:length(s)])) else return(e)
}
# ======================================================================
# Function for counting the nr of lines of a big CSV file
#
#
# 2016/09/09, Luis Torgo.
# ----------------------------------------------------------------------
#
nrLinesFile <- function(f) {
if (.Platform$OS.type == "unix")
as.integer(strsplit(trimws(system(paste("wc -l",f),intern=TRUE)),
" ")[[1]][1])
else
stop("This function requires unix-based systems")
}
# ======================================================================
# Function for drawing a random sample of lines from a big CSV file
#
#
# 2016/09/09, Luis Torgo.
# ----------------------------------------------------------------------
#
sampleCSV <- function(file, percORn, nrLines, header=TRUE, mxPerc=0.5) {
if (.Platform$OS.type != "unix")
stop("This function requires unix-based systems")
if (missing(nrLines)) nrLines <- nrLinesFile(file)
if (percORn < 1)
if (percORn > mxPerc)
stop("This function is not adequate for that big samples.")
else percORn <- as.integer(percORn*nrLines)
perc <- min(2*percORn/nrLines, mxPerc)
system(paste0("perl -ne 'print if (rand() < ",perc,")' ",file,
" > ",file,".tmp.csv"))
dt <- readr::read_csv(paste0(file,".tmp.csv"),col_names=header, n_max=percORn)
file.remove(paste0(file,".tmp.csv"))
if (nrow(dt) != percORn)
warning(paste("Expecting",percORn,"rows, but got",nrow(dt)))
dt
}
# ======================================================================
# Function for drawing a random sample of lines from a big database table
#
#
# 2016/09/09, Luis Torgo.
# ----------------------------------------------------------------------
#
sampleDBMS <- function(dbConn, tbl, percORn, mxPerc=0.5) {
nrRecords <- unlist(dbGetQuery(dbConn, paste("select count(*) from",tbl)))
if (percORn < 1)
if (percORn > mxPerc)
stop("This function is not adequate for that big samples.")
else percORn <- as.integer(percORn*nrRecords)
perc <- min(2*percORn/nrRecords, mxPerc)
dt <- dbGetQuery(dbConn,paste("select * from (select * from",tbl,
"where rand() <= ",perc,") as t limit ",percORn))
if (nrow(dt) != percORn)
warning(paste("Expecting",percORn,"rows, but got",nrow(dt)))
dt
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.