Nothing
#' The discrete Inverted Kumaraswamy family
#'
#' @author Daniel Felipe Villa Rengifo, \email{dvilla@unal.edu.co}
#'
#' @description
#' The function \code{DIKUM()} defines the discrete Inverted Kumaraswamy distribution, a two parameter
#' distribution, for a \code{gamlss.family} object to be used in GAMLSS fitting
#' using the function \code{gamlss()}.
#'
#' @param mu.link defines the mu.link, with "log" link as the default for the mu parameter.
#' @param sigma.link defines the sigma.link, with "log" link as the default for the sigma.
#'
#' @references
#' \insertRef{EL_Helbawy2022}{DiscreteDists}
#'
#' @importFrom Rdpack reprompt
#'
#' @seealso \link{dDIKUM}.
#'
#' @details
#' The discrete Inverted Kumaraswamy distribution with parameters \eqn{\mu} and \eqn{\sigma}
#' has a support 0, 1, 2, ... and density given by
#'
#' \eqn{f(x | \mu, \sigma) = (1-(2+x)^{-\mu})^{\sigma}-(1-(1+x)^{-\mu})^{\sigma}}
#'
#' with \eqn{\mu > 0} and \eqn{\sigma > 0}.
#'
#' Note: in this implementation we changed the original parameters \eqn{\alpha} and \eqn{\beta}
#' for \eqn{\mu} and \eqn{\sigma} respectively, we did it to implement this distribution within gamlss framework.
#'
#' @return
#' Returns a \code{gamlss.family} object which can be used
#' to fit a discrete Inverted Kumaraswamy distribution
#' in the \code{gamlss()} function.
#'
#' @example examples/examples_DIKUM.R
#'
#' @importFrom gamlss.dist checklink
#' @importFrom gamlss rqres.plot
#' @export
DIKUM <- function (mu.link="log", sigma.link="log") {
mstats <- checklink("mu.link", "DIKUM",
substitute(mu.link), c("log"))
dstats <- checklink("sigma.link", "DIKUM",
substitute(sigma.link), c("log"))
structure(list(family=c("DIKUM", "discrete-Inverted-Kumaraswamy"),
parameters=list(mu=TRUE, sigma=TRUE),
nopar=2,
type="Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
# Primeras derivadas, por ahora son computacionales
dldm = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.01)
dldm <- as.vector(attr(dm, "gradient"))
dldm
},
dldd = function(y, mu, sigma) {
dd <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.01)
dldd <- as.vector(attr(dd, "gradient"))
dldd
},
# Segundas derivadas, por ahora son computacionales
d2ldm2 = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.01)
dldm <- as.vector(attr(dm, "gradient"))
d2ldm2 <- - dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2, -1e-15)
d2ldm2
},
d2ldmdd = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.01)
dldm <- as.vector(attr(dm, "gradient"))
dd <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.01)
dldd <- as.vector(attr(dd, "gradient"))
d2ldmdd <- - dldm * dldd
d2ldmdd <- ifelse(d2ldmdd < -1e-15, d2ldmdd, -1e-15)
d2ldmdd
},
d2ldd2 = function(y, mu, sigma) {
dd <- gamlss::numeric.deriv(dDIKUM(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.01)
dldd <- as.vector(attr(dd, "gradient"))
d2ldd2 <- - dldd * dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2, -1e-15)
d2ldd2
},
G.dev.incr = function(y, mu, sigma, pw = 1, ...) -2*dDIKUM(y, mu, sigma, log=TRUE),
rqres = expression(rqres(pfun="pDIKUM", type="Discrete",
ymin = 0, y = y, mu = mu, sigma = sigma)),
mu.initial = expression(mu <- rep(estim_mu_sigma_DIKUM(y)[1], length(y)) ),
sigma.initial = expression(sigma <- rep(estim_mu_sigma_DIKUM(y)[2], length(y)) ),
mu.valid = function(mu) all(mu > 0),
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) all(y >= 0),
mean = function(mu, sigma) {
y = 0:999
p1 <- (1-(2+y)^(-1*mu))^(sigma)
p2 <- (1-(1+y)^(-1*mu))^sigma
p <- p1 - p2
return(sum(y*p))
},
variance = function(mu, sigma) {
y = 0:999
p1 <- (1-(2+y)^(-1*mu))^(sigma)
p2 <- (1-(1+y)^(-1*mu))^sigma
p <- p1 - p2
var = sum((y^2)*p)-(sum(y*p))^2
return(var)
}
),
class=c("gamlss.family", "family"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.