Nothing
#' @title Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
#'
#' @description Computes the fit (TEFI) of a dimensionality structure using Von Neumman's entropy
#' when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.
#'
#' @param data Matrix, data frame, or \code{*EGA} class object.
#' Matrix or data frame can be raw data or a correlation matrix.
#' All \code{*EGA} objects are accepted. \code{\link[EGAnet]{hierEGA}}
#' input will produced the Generalized TEFI (see \code{\link[EGAnet]{genTEFI}})
#'
#' @param structure Numeric or character vector (length = \code{ncol(data)}).
#' Can be theoretical factors or the structure detected by \code{\link{EGA}}
#'
#' @param verbose Boolean (length = 1).
#' Whether messages and (insignificant) warnings should be output.
#' Defaults to \code{TRUE} to see all messages and warnings for every
#' function call.
#' Set to \code{FALSE} to ignore messages and warnings
#'
#' @return Returns a data frame with columns:
#'
#' \strong{Non-hierarchical Structure}
#'
#' \item{VN.Entropy.Fit}{The Total Entropy Fit Index using Von Neumman's entropy}
#'
#' \item{Total.Correlation}{The total correlation of the dataset}
#'
#' \item{Average.Entropy}{The average entropy of the dataset}
#'
#' \strong{Hierarchical Structure}
#'
#' \item{VN.Entropy.Fit}{The Generalized Total Entropy Fit Index using Von Neumman's entropy}
#'
#' \item{Lower.Order.VN}{Lower order (only) Total Entropy Fit Index}
#'
#' \item{Higher.Order.VN}{Higher order (only) Total Entropy Fit Index}
#'
#'
#' @examples
#' # Load data
#' wmt <- wmt2[,7:24]
#'
#' # Estimate EGA model
#' ega.wmt <- EGA(
#' data = wmt, model = "glasso",
#' plot.EGA = FALSE # no plot for CRAN checks
#' )
#'
#' # Compute entropy indices for empirical EGA
#' tefi(ega.wmt)
#'
#' # User-defined structure (with `EGA` object)
#' tefi(ega.wmt, structure = c(rep(1, 5), rep(2, 5), rep(3, 8)))
#'
#' @references
#' \strong{Initial formalization and simulation} \cr
#' Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
#' Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
#' \emph{Multivariate Behavioral Research}.
#'
#' @author Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
#'
#' @export
# Total Entropy Fit Index Function (for correlation matrices)
# Updated 09.08.2023
tefi <- function(data, structure = NULL, verbose = TRUE)
{
# Check for errors (returns 'data' and 'ega_class' flag)
error_return <- tefi_errors(data, verbose)
# Get 'data' and 'ega_class' flag
data <- error_return$data; ega_class <- error_return$ega_class
# Branch for `EGA` class
if(any(ega_class)){
# Get `EGA` object
ega_object <- get_EGA_object(data)
# Get structure
structure <- get_tefi_structure(data, structure, ega_object)
# Get correlation matrix based on EGA
if(is(data, "hierEGA")){
correlation_matrix <- ega_object$lower_order$correlation
}else{
correlation_matrix <- ega_object$correlation
}
}else{ # Non-EGA objects
# Get structure
structure <- get_tefi_structure(data, structure, NULL)
# Generic function to get necessary inputs
output <- obtain_sample_correlations(
data = data, n = 1L, # set to 1 to avoid error
corr = "auto", na.data = "pairwise",
verbose = verbose
)
# Get correlation matrix
correlation_matrix <- output$correlation_matrix
}
# Get absolute correlation matrix
correlation_matrix <- abs(correlation_matrix)
# Branch based on hierarchical structure
return(
swiftelse( # hierarchical will be a list
get_object_type(structure) == "list",
tefi_generalized(correlation_matrix, structure, verbose),
tefi_standard(correlation_matrix, structure, verbose)
)
)
}
# Bug Checking ----
# ## Basic input
# data <- wmt2[,7:24]; ega.wmt <- EGA(data, plot.EGA = FALSE)
# data <- ega.wmt$correlation
# structure <- ega.wmt$wc
#' @noRd
# Argument errors
# Updated 19.08.2023
tefi_errors <- function(data, verbose)
{
# Get `EGA` class
ega_class <- grepl("EGA", class(data))
# 'verbose' errors
length_error(verbose, 1, "tefi")
typeof_error(verbose, "logical", "tefi")
# 'data' errors
if(any(!ega_class)){
# Check for appropriate data
object_error(data, c("matrix", "data.frame", "tibble"), "tefi")
# Check for tibble
if(get_object_type(data) == "tibble"){
data <- as.data.frame(data)
}
# Ensure usable data
data <- usable_data(data, verbose)
}
# Return data and `EGA` classes
return(list(data = data, ega_class = ega_class))
}
#' @noRd
# Handle structure input ----
# Updated 06.10.2023
get_tefi_structure <- function(data, structure, ega_object = NULL)
{
# Check for whether `EGA` object is NULL
if(is.null(ega_object)){
# Get number of variables
variables <- dim(data)[2]
# Determine if NULL
if(is.null(structure)){
stop(
paste(
"Input to 'structure' was `NULL` and 'data' was not identified as",
"an `EGA` type object. Input 'data' or an `EGA` type object."
),
call. = FALSE
)
}else if(get_object_type(structure) == "list"){
# Determine if list (for hierarchical structures)
# If not `EGA`, then check for proper object structure in `structure`
if(all(names(structure) %in% c("lower_order", "higher_order"))){
# Perform length check on lower order
length_error(structure$lower_order, variables, "tefi")
# Get number of communities in lower order
lower_order_communities <- unique_length(structure$lower_order)
# Perform length check on higher order
length_error(structure$higher_order, c(lower_order_communities, variables), "tefi")
# Check for whether higher order's length is equal to
# lower order communities
if(length(structure$higher_order) == lower_order_communities){
structure$higher_order <- single_revalue_memberships(
structure$lower_order, structure$higher_order
)
}
}else{ # Bad 'structure' with NULL `EGA` object
stop(
paste(
"Input to 'structure' was provided but did not match expected input.",
"For hierarchical structures, 'structure' should be a list with elements",
"\"lower_order\" and \"higher_order\""
),
call. = FALSE
)
}
}else{
# Perform length check
length_error(structure, variables, "tefi")
}
}else{
# Get flag for hierarchical
if(is(data, "hierEGA")){ # Use internal `hierEGA_structure` from `itemStability`
structure <- hierEGA_structure(ega_object, structure)
}else if(is.null(structure)){ # Use EGA memberships
structure <- ega_object$wc
}else{ # Ensure proper length
length_error(structure, length(ega_object$wc), "tefi")
}
}
# Convert if string
if(is.list(structure)){
# Check for characters
structure <- lapply(
structure, function(x){
# If characters, then convert to numeric
swiftelse(
is.character(x),
as.numeric(reindex_memberships(x)),
x
)
}
)
}else if(is.character(structure)){
structure <- as.numeric(reindex_memberships(structure))
}
# Return structure
return(structure)
}
#' @noRd
# `tefi` standard function ----
# Updated 07.08.2023
tefi_standard <- function(correlation_matrix, structure, verbose)
{
# Check structure
if(anyNA(structure)){
# Determine variables that are NA
rm.vars <- is.na(structure)
# Send warning message
if(verbose){
warning(
paste(
"Some variables did not belong to a dimension:",
paste0(dimnames(correlation_matrix)[[2]][rm.vars], collapse = ", "),
"\n\nUse caution: These variables have been removed from the TEFI calculation"
), call. = FALSE
)
}
# Keep variables
keep_vars <- !rm.vars
# Keep available variables
correlation_matrix <- correlation_matrix[keep_vars, keep_vars]
# Remove NAs from structure
structure <- structure[keep_vars]
}
# Obtain Von Neumann's entropy of density matrix
H_vn <- matrix_entropy(correlation_matrix / dim(correlation_matrix)[2L])
# Obtain communities
communities <- unique_length(structure)
# Get Von Neumman entropy by community
H_vn_wc <- nvapply(seq_len(communities), function(community){
# Get indices
indices <- structure == community
# Get community matrix
community_matrix <- correlation_matrix[indices, indices]
# Return Von Neumann entropy
return(matrix_entropy(community_matrix / dim(community_matrix)[2L]))
})
# Pre-compute values
## Mean of community Von Neumann
mean_H_vn_wc <- mean(H_vn_wc, na.rm = TRUE)
## Sum of community Von Neumann
sum_H_vn_wc <- mean_H_vn_wc * communities
## Difference between total and total community
# H_diff <- H_vn - sum_H_vn_wc
## Average entropy
mean_H_vn <- mean_H_vn_wc - H_vn
# Set up results
return(
fast.data.frame(
data = c(
mean_H_vn + ((H_vn - sum_H_vn_wc) * sqrt(communities)),
sum_H_vn_wc - H_vn,
mean_H_vn
), ncol = 3,
colnames = c(
"VN.Entropy.Fit", "Total.Correlation", "Average.Entropy"
)
)
)
}
#' @noRd
# `tefi` generalized function ----
# Updated 07.08.2023
tefi_generalized <- function(correlation_matrix, structure, verbose)
{
# Get variables
variables <- dim(correlation_matrix)[2L]
# Loop over structure to determine NAs at lower or higher order
NA_memberships <- rowSums(lvapply(structure, is.na, LENGTH = variables))
# Determine variables that are NA
rm.vars <- NA_memberships != 0
# Check structure
if(any(rm.vars)){
# Send warning message
if(verbose){
warning(
paste(
"Some variables did not belong to a dimension:",
paste0(dimnames(correlation_matrix)[[2]][rm.vars], collapse = ", "),
"\n\nUse caution: These variables have been removed from the TEFI calculation"
), call. = FALSE
)
}
# Keep variables
keep_vars <- !rm.vars
# Keep available variables
correlation_matrix <- correlation_matrix[keep_vars, keep_vars]
# Remove NAs from structure
structure <- lapply(structure, function(x){x[keep_vars]})
}
# Obtain Von Neumann's entropy of density matrix
H_vn <- matrix_entropy(correlation_matrix / dim(correlation_matrix)[2L])
# Obtain communities
lower_communities <- unique_length(structure$lower_order)
# Get Von Neumman entropy by community
H_vn_wc_lower <- nvapply(seq_len(lower_communities), function(community){
# Get indices
indices <- structure$lower_order == community
# Get community matrix
community_matrix <- correlation_matrix[indices, indices]
# Return Von Neumann entropy
return(matrix_entropy(community_matrix / dim(community_matrix)[2L]))
})
# Obtain communities
higher_communities <- unique_length(structure$higher_order)
# Get Von Neumman entropy by community
H_vn_wc_higher <- nvapply(seq_len(higher_communities), function(community){
# Get indices
indices <- structure$higher_order == community
# Get community matrix
community_matrix <- correlation_matrix[indices, indices]
# Return Von Neumann entropy
return(matrix_entropy(community_matrix / dim(community_matrix)[2L]))
})
# FULL Generalized TEFI
# ((A / B - C) + (C - A) * sqrt(B)) + ((E / B - C) + (C - E) * sqrt(B))
# Simplified Generalized TEFI
# ((A + E) / B) - (2 * C) + ((2 * C) - A - E) * sqrt(B)
# Where
# A = sum of the Von Neumann entropy for each lower order community
A <- sum(H_vn_wc_lower, na.rm = TRUE)
# B = number of lower order communities (`lower_communities`)
# C = Von Neumman entropy of the correlation matrix (`H_vn`)
# E = sum of the Von Neumann entropy for each higher order community
E <- sum(H_vn_wc_higher, na.rm = TRUE)
# Pre-compute values
sqrt_lower <- sqrt(lower_communities) # sqrt(B)
double_H_vn <- 2 * H_vn # 2 * C
# Set up results
return(
fast.data.frame(
c(
((A + E) / lower_communities) - double_H_vn + (double_H_vn - A - E) * sqrt_lower,
(A / lower_communities - H_vn) + (H_vn - A) * sqrt_lower,
(E / lower_communities - H_vn) + (H_vn - E) * sqrt_lower
),
ncol = 3,
colnames = c("VN.Entropy.Fit","Lower.Order.VN","Higher.Order.VN")
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.