R/calibrate.R

calibrate <-
  function (formula, data, test.higher.orders = TRUE, max.order = 4,
            p.crit = 0.05, F.test = "partial",
            weights,
            subset, na.action,
            method = "qr", model = FALSE, x = FALSE, y = FALSE, contrasts = NULL,
            warn = TRUE, ...)
  {
    if (!is.null(wserv <- get0("weights",mode = "numeric", ifnotfound = NULL))) {
      data<-cbind(data,wserv)
      fit <- lm(formula, data=data, weights = wserv)
    }
    else {
      fit <- lm(formula, data=data)
    }

    name.pred <- attr(terms(fit), "term.labels")
    E <- length(name.pred)
    if (!test.higher.orders) {
      if (E >= 2) {
        if (length(grep(name.pred[1], name.pred)) < E) {
          stop(paste("All predictor variables in the model must be functions of",
                     "a single variable; for example, x, x^2, etc."))
        }
        pred <- model.frame(fit)[, name.pred[1]]
        dc.pred <- data.class(pred)
        if (!((dc.pred == "AsIs" & is.numeric(pred)) || dc.pred ==
              "numeric")) {
          stop("The single variable that all predictors are functions of must be numeric.")
        }
      }
      else {
        pred <- model.frame(fit)[, name.pred]
        dc.pred <- data.class(pred)
        if (!((dc.pred == "AsIs" & is.numeric(pred)) || dc.pred ==
              "numeric")) {
          stop("The single predictor variable must be numeric.")
        }
      }
      if (!x) {
        fit <- update(fit, x = TRUE)
      }
      return(fit)
    }
    if (E != 1) {
      stop(paste("When test.higher.orders=TRUE, there can be only one",
                 "predictor variable in the initial calibration model"))
    }
    pred <- model.frame(fit)[, name.pred]
    dc.pred <- data.class(pred)
    if (!((dc.pred == "AsIs" & is.numeric(pred)) || dc.pred ==
          "numeric")) {
      stop("The single predictor variable must be numeric.")
    }
    if (!is.numeric(max.order) || length(max.order) != 1 || max.order <
        1 || max.order != trunc(max.order)) {
      stop("The argument 'max.order' must be an integer greater than 0")
    }
    if (!is.numeric(p.crit) || length(p.crit) != 1 || p.crit <=
        0 || p.crit >= 1) {
      stop("The argument 'p.crit' must be a numeric scalar greater than 0 and less than 1")
    }
    F.test <- match.arg(F.test, c("lof", "partial"))
    n.pred <- length(pred)
    n.pred.unique <- length(unique(pred))
    max.order.new <- min(max.order, n.pred.unique - 1)
    if (max.order.new < max.order) {
      if (warn) {
        warning(paste("The argument 'max.order' was reset from",
                      max.order, "to", max.order.new, "because there are only",
                      n.pred.unique, "unique values of the single predictor variable."))
      }
      max.order <- max.order.new
    }
    if (E < max.order) {
      if (F.test == "lof" && (n.pred.unique < n.pred) && fit$df.residual >
          (n.pred - n.pred.unique) + 1) {
        aov.table <- anovaPE(fit)
        index <- grep("Lack of Fit", row.names(aov.table))
        lof.p <- aov.table[index, "Pr(>F)"]
        try.new <- lof.p < p.crit
        while (try.new) {
          E <- E + 1
          formula.new <- eval(parse(text = paste(". ~  . + I(",
                                                 name.pred, "^", eval(E), ")", sep = "", collapse = "")))
          fit.new <- update(fit, formula = formula.new)
          if (any(is.na(fit.new$coef))) {
            if (warn) {
              warning(paste("Final model of order", E -
                              1, "because of singularities in higher order models."))
            }
            break
          }
          if (fit.new$df.residual > (n.pred - n.pred.unique)) {
            fit <- fit.new
            aov.table <- anovaPE(fit)
            index <- grep("Lack of Fit", row.names(aov.table))
            lof.p <- aov.table[index, "Pr(>F)"]
            try.new <- (E < max.order) && (lof.p < p.crit)
          }
          else {
            partial.F.p <- anova(fit, fit.new)[2, "Pr(>F)"]
            L1 <- partial.F.p < p.crit
            if (L1) {
              fit <- fit.new
            }
            try.new <- L1 && (E < max.order)
          }
        }
      }
      else {
        try.new <- TRUE
        while (try.new) {
          E <- E + 1
          formula.new <- eval(parse(text = paste(". ~  . + I(",
                                                 name.pred, "^", eval(E), ")", sep = "", collapse = "")))
          fit.new <- update(fit, formula = formula.new)
          if (any(is.na(fit.new$coef))) {
            if (warn) {
              warning(paste("Final model of order", E -
                              1, "because of singularities in higher order models."))
            }
            break
          }
          partial.F.p <- anova(fit, fit.new)[2, "Pr(>F)"]
          L1 <- partial.F.p < p.crit
          if (L1) {
            fit <- fit.new
          }
          try.new <- L1 && (E < max.order)
        }
      }
    }
    if (!x)
      fit <- update(fit, x = TRUE)
    class(fit) <- c("calibrate", "lm")
    fit
  }

Try the EnvStats package in your browser

Any scripts or data that you put into this service are public.

EnvStats documentation built on Sept. 11, 2024, 6:03 p.m.