Nothing
predIntNparSimultaneousNScalar <-
function (n.median = 1, k = 1, m = 2, r = 1, rule = c("k.of.m",
"CA", "Modified.CA"), lpl.rank = ifelse(pi.type == "upper",
0, 1), n.plus.one.minus.upl.rank = ifelse(pi.type == "lower",
0, 1), pi.type = "upper", conf.level = 0.95, n.max = 5000,
integrate.args.list = NULL, maxiter = 1000)
{
if (!is.vector(n.median, mode = "numeric") || length(n.median) !=
1 || n.median != trunc(n.median) || n.median < 1 || !is.odd(n.median))
stop("'n.median' must be a positive odd integer")
rule <- match.arg(rule)
switch(rule, k.of.m = {
if (!is.vector(k, mode = "numeric") || length(k) != 1 ||
k != trunc(k) || k < 1 || !is.vector(m, mode = "numeric") ||
length(m) != 1 || m != trunc(m) || m < 1 || !is.vector(r,
mode = "numeric") || length(r) != 1 || r != trunc(r) ||
r < 1 || k > m) stop(paste("'k', 'm', and 'r' must be positive integers,",
"and 'k' must be between 1 and 'm'"))
if (k > 1) stop("Finding n for the k-of-m rule with k>1 is not yet implemented")
}, CA = {
if (!is.vector(m, mode = "numeric") || length(m) != 1 ||
m != trunc(m) || m < 1 || !is.vector(r, mode = "numeric") ||
length(r) != 1 || r != trunc(r) || r < 1) stop("'m', and 'r' must be positive integers")
k <- "First.or.all.of.next.m.minus.one"
}, Modified.CA = {
if (!is.vector(m, mode = "numeric") || length(m) != 1 ||
m != trunc(m) || m < 1 || !is.vector(r, mode = "numeric") ||
length(r) != 1 || r != trunc(r) || r < 1) stop("'m', and 'r' must be positive integers")
k <- "First.or.at.least.two.of.next.three"
m <- 4
})
if (!is.vector(n.max, mode = "numeric") || length(n.max) !=
1 || !is.finite(n.max) || n.max != trunc(n.max) || n.max <
2)
stop("'n.max' must be a positive integer greater than 1")
pi.type <- match.arg(pi.type, c("upper", "lower"))
if (pi.type == "upper")
lpl.rank <- 0
else n.plus.one.minus.upl.rank <- 0
if (!is.vector(lpl.rank, mode = "numeric") || length(lpl.rank) >
1 || !is.finite(lpl.rank) || lpl.rank != trunc(lpl.rank) ||
lpl.rank < 0 || lpl.rank >= n.max)
stop("'lpl.rank' must be a non-negative integer less than 'n.max'")
if (pi.type == "lower" & lpl.rank < 1)
stop("When pi.type='lower', 'lpl.rank' must be a positive integer")
if (!is.vector(n.plus.one.minus.upl.rank, mode = "numeric") ||
length(n.plus.one.minus.upl.rank) > 1 || !is.finite(n.plus.one.minus.upl.rank) ||
n.plus.one.minus.upl.rank != trunc(n.plus.one.minus.upl.rank) ||
n.plus.one.minus.upl.rank < 0 || n.plus.one.minus.upl.rank >=
n.max)
stop(paste("'n.plus.one.minus.upl.rank' must be a non-negative",
"integer less than 'n.max'"))
if (pi.type == "upper" & n.plus.one.minus.upl.rank < 1)
stop("When pi.type='upper', 'n.plus.one.minus.upl.rank' must be positive integer")
min.n <- ifelse(pi.type == "lower", max(2, lpl.rank + 1),
max(2, n.plus.one.minus.upl.rank + 1))
conf.level.min.n <- predIntNparSimultaneousConfLevelScalar(n = min.n,
n.median = n.median, k = k, m = m, r = r, rule = rule,
lpl.rank = lpl.rank, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (conf.level.min.n >= conf.level) {
n <- min.n
}
else if (rule == "k.of.m" && r == 1 && n.median == 1) {
n <- predIntNparNScalar(k = k, m = m, lpl.rank = lpl.rank,
n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, conf.level = conf.level, n.max = n.max,
maxiter = maxiter)
}
else {
conf.level.n.max <- predIntNparSimultaneousConfLevelScalar(n = n.max,
n.median = n.median, k = k, m = m, r = r, rule = rule,
lpl.rank = lpl.rank, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (conf.level.n.max < conf.level) {
stop(paste("The required confidence level cannot be achieved",
"with the supplied value of 'n.max'. You need to",
"adjust the value of 'conf.level', 'n.median', 'k', 'm', 'r',",
"and/or 'n.max'"))
}
fcn.for.root <- function(n.weird, n.median.weird, k.weird,
m.weird, r.weird, rule.weird, lpl.rank.weird, n.plus.one.minus.upl.rank.weird,
pi.type.weird, conf.level.weird, integrate.args.list.weird) {
n <- trunc(n.weird)
predIntNparSimultaneousConfLevelScalar(n = n, n.median = n.median.weird,
k = k.weird, m = m.weird, r = r.weird, rule = rule.weird,
lpl.rank = lpl.rank.weird, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank.weird,
pi.type = pi.type.weird, integrate.args.list = integrate.args.list.weird) -
conf.level.weird
}
uni.list <- uniroot(fcn.for.root, interval = c(min.n,
n.max), tol = 1, maxiter = maxiter, n.median.weird = n.median,
k.weird = k, m.weird = m, r.weird = r, rule.weird = rule,
lpl.rank.weird = lpl.rank, n.plus.one.minus.upl.rank.weird = n.plus.one.minus.upl.rank,
pi.type.weird = pi.type, conf.level.weird = conf.level,
integrate.args.list.weird = integrate.args.list)
if (uni.list$f.root > 0)
n <- trunc(uni.list$root)
else n <- trunc(uni.list$root) + 1
}
n
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.