Nothing
#' Create Delay Shifted Cases
#'
#' @description `r lifecycle::badge("stable")`
#'
#' This functions creates a data frame of reported cases that has been smoothed
#' using a centred partial rolling average (with a period set by
#' `smoothing_window`) and shifted back in time by some delay. It is used by
#' [estimate_infections()] to generate the mean shifted prior on which the back
#' calculation method (see [backcalc_opts()]) is based.
#'
#' @details
#' The function first shifts all the data back in time by `shift` days (thus
#' discarding the first `shift` days of data) and then applies a centred
#' rolling mean of length `smoothing_window` to the shifted data except for
#' the final period. The final period (the forecast horizon plus half the
#' smoothing window) is instead replaced by a log-linear model fit (with 1
#' added to the data for fitting to avoid zeroes and later subtracted again),
#' projected to the end of the forecast horizon. The initial part of the data
#' (corresponding to the length of the smoothing window) is then removed, and
#' any non-integer resulting values rounded up.
#'
#' @param smoothing_window Numeric, the rolling average smoothing window
#' to apply. Must be odd in order to be defined as a centred average.
#'
#' @param shift Numeric, mean delay shift to apply.
#'
#' @inheritParams estimate_infections
#' @inheritParams create_stan_data
#' @importFrom data.table copy shift frollmean fifelse .N
#' @importFrom stats lm
#' @importFrom runner mean_run
#' @return A `<data.frame>` for shifted reported cases
#' @keywords internal
#' @examples
#' \dontrun{
#' shift <- 7
#' horizon <- 7
#' smoothing_window <- 14
#' ## add NAs for horizon
#' cases <- add_horizon(example_confirmed[1:30], horizon)
#' ## add zeroes initially
#' cases <- data.table::rbindlist(list(
#' data.table::data.table(
#' date = seq(
#' min(cases$date) - 10,
#' min(cases$date) - 1,
#' by = "days"
#' ),
#' confirm = 0, breakpoint = 0
#' ),
#' cases
#' ))
#' create_shifted_cases(cases, shift, smoothing_window, horizon)
#' }
create_shifted_cases <- function(data, shift,
smoothing_window, horizon) {
shifted_reported_cases <- data.table::copy(data)[
,
confirm := data.table::shift(confirm,
n = shift,
type = "lead", fill = NA
)
][
,
confirm := runner::mean_run(
confirm,
k = smoothing_window, lag = -floor(smoothing_window / 2)
)
]
## Forecast trend on reported cases using the last week of data
final_period <- shifted_reported_cases[!is.na(confirm)][
max(1, .N - smoothing_window):.N
][
,
t := seq_len(.N)
]
lm_model <- stats::lm(log(confirm + 1) ~ t, data = final_period)
## Estimate unreported future infections using a log linear model
shifted_reported_cases <- shifted_reported_cases[
date >= min(final_period$date), t := seq_len(.N)
][
,
confirm := data.table::fifelse(
!is.na(t) & t >= 0,
exp(lm_model$coefficients[1] + lm_model$coefficients[2] * t) - 1,
confirm
)
][, t := NULL]
## Drop median generation interval initial values
shifted_reported_cases <- shifted_reported_cases[
,
confirm := ceiling(confirm)
]
shifted_reported_cases <- shifted_reported_cases[-(1:smoothing_window)]
return(shifted_reported_cases)
}
#' Construct the Required Future Rt assumption
#'
#' @description `r lifecycle::badge("stable")`
#' Converts the `future` argument from [rt_opts()] into arguments that can be
#' passed to stan.
#'
#' @param future A character string or integer. This argument indicates how to
#' set future Rt values. Supported options are to project using the Rt model
#' ("project"), to use the latest estimate based on partial data ("latest"),
#' to use the latest estimate based on data that is over 50% complete
#' ("estimate"). If an integer is supplied then the Rt estimate from this many
#' days into the future (or past if negative) past will be used forwards in
#' time.
#'
#' @param delay Numeric mean delay
#' @importFrom rlang arg_match
#' @keywords internal
#' @return A list containing a logical called fixed and an integer called from
create_future_rt <- function(future = c("latest", "project", "estimate"),
delay = 0) {
out <- list(fixed = FALSE, from = 0)
if (is.character(future)) {
future <- arg_match(future)
if (!(future == "project")) {
out$fixed <- TRUE
out$from <- ifelse(future == "latest", 0, -delay)
}
} else if (is.numeric(future)) {
out$fixed <- TRUE
out$from <- as.integer(future)
}
return(out)
}
#' Create Time-varying Reproduction Number Data
#'
#' @description `r lifecycle::badge("stable")`
#' Takes the output from [rt_opts()] and converts it into a list understood by
#' stan.
#'
#' @param rt A list of options as generated by [rt_opts()] defining Rt
#' estimation. Defaults to [rt_opts()]. To generate new infections using
#' the non-mechanistic model instead of the renewal equation model, use
#' `rt = NULL`. The non-mechanistic model internally uses the setting
#' `rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0")`.
#'
#' @param breakpoints An integer vector (binary) indicating the location of
#' breakpoints.
#'
#' @param horizon Numeric, forecast horizon.
#' @importFrom cli cli_abort
#'
#' @seealso rt_settings
#' @return A list of settings defining the time-varying reproduction number
#' @inheritParams create_future_rt
#' @keywords internal
#' @examples
#' \dontrun{
#' # default Rt data
#' create_rt_data()
#'
#' # settings when no Rt is desired
#' create_rt_data(rt = NULL)
#'
#' # using breakpoints
#' create_rt_data(rt_opts(use_breakpoints = TRUE), breakpoints = rep(1, 10))
#'
#' # using random walk
#' create_rt_data(rt_opts(rw = 7), breakpoints = rep(1, 10))
#' }
create_rt_data <- function(rt = rt_opts(), breakpoints = NULL,
delay = 0, horizon = 0) {
# Define if GP is on or off
if (is.null(rt)) {
rt <- rt_opts(
use_rt = FALSE,
future = "project",
gp_on = "R0",
rw = 0
)
}
# define future Rt arguments
future_rt <- create_future_rt(
future = rt$future,
delay = delay
)
# apply random walk
if (rt$rw != 0) {
if (is.null(breakpoints)) {
cli_abort(
c(
"!" = "breakpoints must be supplied when using random walk."
)
)
}
breakpoints <- seq_along(breakpoints)
breakpoints <- floor(breakpoints / rt$rw)
if (!(rt$future == "project")) {
max_bps <- length(breakpoints) - horizon + future_rt$from
if (max_bps < length(breakpoints)) {
breakpoints[(max_bps + 1):length(breakpoints)] <- breakpoints[max_bps]
}
}
} else {
breakpoints <- cumsum(breakpoints)
}
if (sum(breakpoints) == 0) {
rt$use_breakpoints <- FALSE
}
# add a shift for 0 effect in breakpoints
breakpoints <- breakpoints + 1
# map settings to underlying gp stan requirements
rt_data <- list(
estimate_r = as.numeric(rt$use_rt),
bp_n = ifelse(rt$use_breakpoints, max(breakpoints) - 1, 0),
breakpoints = breakpoints,
future_fixed = as.numeric(future_rt$fixed),
fixed_from = future_rt$from,
pop = rt$pop,
stationary = as.numeric(rt$gp_on == "R0"),
future_time = horizon - future_rt$from
)
return(rt_data)
}
#' Create Back Calculation Data
#'
#' @description `r lifecycle::badge("stable")`
#' Takes the output of [backcalc_opts()] and converts it into a list understood
#' by stan.
#'
#' @param backcalc A list of options as generated by [backcalc_opts()] to
#' define the back calculation. Defaults to [backcalc_opts()].
#'
#' @seealso backcalc_opts
#' @importFrom data.table fcase
#' @return A list of settings defining the Gaussian process
#' @keywords internal
create_backcalc_data <- function(backcalc = backcalc_opts()) {
data <- list(
rt_half_window = as.integer((backcalc$rt_window - 1) / 2),
backcalc_prior = data.table::fcase(
backcalc$prior == "none", 0,
backcalc$prior == "reports", 1,
backcalc$prior == "infections", 2,
default = 0
)
)
return(data)
}
#' Create Gaussian Process Data
#'
#' @description `r lifecycle::badge("stable")`
#' Takes the output of [gp_opts()] and converts it into a list understood by
#' stan.
#' @param gp A list of options as generated by [gp_opts()] to define the
#' Gaussian process. Defaults to [gp_opts()]. Set to `NULL` to disable the
#' Gaussian process.
#' @param data A list containing the following numeric values:
#' `t`, `seeding_time`, `horizon`.
#' @importFrom data.table fcase
#' @seealso [gp_opts()]
#' @return A list of settings defining the Gaussian process
#' @keywords internal
#' @examples
#' \dontrun{
#' # define input data required
#' data <- list(
#' t = 30,
#' seeding_time = 7,
#' horizon = 7
#' )
#'
#' # default gaussian process data
#' create_gp_data(data = data)
#'
#' # settings when no gaussian process is desired
#' create_gp_data(NULL, data)
#'
#' # custom lengthscale
#' create_gp_data(gp_opts(ls_mean = 14), data)
#' }
create_gp_data <- function(gp = gp_opts(), data) {
# Define if GP is on or off
if (is.null(gp)) {
fixed <- TRUE
data$stationary <- 1
gp <- gp_opts()
} else {
fixed <- FALSE
}
time <- data$t - data$seeding_time
if (data$future_fixed > 0) {
time <- time + data$fixed_from - data$horizon
}
if (data$stationary == 1) {
time <- time - 1
}
# basis functions
M <- ceiling(time * gp$basis_prop)
# map settings to underlying gp stan requirements
gp_data <- list(
fixed = as.numeric(fixed),
M = M,
L = gp$boundary_scale,
gp_type = data.table::fcase(
gp$kernel == "se", 0,
gp$kernel == "periodic", 1,
gp$kernel == "matern" || gp$kernel == "ou", 2,
default = 2
),
nu = gp$matern_order,
w0 = gp$w0
)
gp_data <- c(data, gp_data)
return(gp_data)
}
#' Create Observation Model Settings
#'
#' @description `r lifecycle::badge("stable")`
#' Takes the output of [obs_opts()] and converts it into a list understood
#' by stan.
#' @param obs A list of options as generated by [obs_opts()] defining the
#' observation model. Defaults to [obs_opts()].
#' @param dates A vector of dates used to calculate the day of the week.
#' @seealso [obs_opts()]
#' @return A list of settings ready to be passed to stan defining
#' the Observation Model
#' @keywords internal
#' @examples
#' \dontrun{
#' dates <- seq(as.Date("2020-03-15"), by = "days", length.out = 15)
#' # default observation model data
#' create_obs_model(dates = dates)
#'
#' # Poisson observation model
#' create_obs_model(obs_opts(family = "poisson"), dates = dates)
#'
#' # Applying a observation scaling to the data
#' create_obs_model(
#' obs_opts(scale = Normal(mean = 0.4, sd = 0.01)),
#' dates = dates
#' )
#'
#' # Apply a custom week week length
#' create_obs_model(obs_opts(week_length = 3), dates = dates)
#' }
create_obs_model <- function(obs = obs_opts(), dates) {
data <- list(
model_type = as.numeric(obs$family == "negbin"),
week_effect = ifelse(obs$week_effect, obs$week_length, 1),
obs_weight = obs$weight,
obs_scale = as.integer(obs$scale != Fixed(1)),
likelihood = as.numeric(obs$likelihood),
return_likelihood = as.numeric(obs$return_likelihood)
)
data$day_of_week <- add_day_of_week(dates, data$week_effect)
return(data)
}
#' Create Stan Data Required for estimate_infections
#'
#' @description`r lifecycle::badge("stable")`
#' Takes the output of [stan_opts()] and converts it into a list understood by
#' stan. Internally calls the other `create_` family of functions to
#' construct a single list for input into stan with all data required
#' present.
#'
#' @param shifted_cases A `<data.frame>` of delay shifted cases
#'
#' @param seeding_time Integer; seeding time, usually obtained using
#' [get_seeding_time()].
#'
#' @inheritParams estimate_infections
#' @inheritParams create_gp_data
#' @inheritParams create_obs_model
#' @inheritParams create_rt_data
#' @inheritParams create_backcalc_data
#' @importFrom stats lm
#' @importFrom purrr safely
#' @return A list of stan data
#' @keywords internal
#' @examples
#' \dontrun{
#' create_stan_data(
#' example_confirmed, 7, rt_opts(), gp_opts(), obs_opts(), 7,
#' backcalc_opts(), create_shifted_cases(example_confirmed, 7, 14, 7)
#' )
#' }
create_stan_data <- function(data, seeding_time, rt, gp, obs, backcalc,
shifted_cases, forecast) {
cases <- data[(seeding_time + 1):.N]
cases[, lookup := seq_len(.N)]
case_times <- cases[!is.na(confirm), lookup]
imputed_times <- cases[!(accumulate), lookup]
accumulate <- cases$accumulate
confirmed_cases <- cases[1:(.N - forecast$horizon)]$confirm
stan_data <- list(
cases = confirmed_cases[!is.na(confirmed_cases)],
any_accumulate = as.integer(any(accumulate)),
case_times = as.integer(case_times),
imputed_times = as.integer(imputed_times),
accumulate = as.integer(accumulate),
lt = length(case_times),
it = length(imputed_times),
shifted_cases = shifted_cases,
t = length(data$date),
burn_in = 0,
seeding_time = seeding_time,
horizon = forecast$horizon
)
# add Rt data
stan_data <- c(
stan_data,
create_rt_data(rt,
breakpoints = data[(stan_data$seeding_time + 1):.N]$breakpoint,
delay = stan_data$seeding_time, horizon = stan_data$horizon
)
)
# backcalculation settings
stan_data <- c(stan_data, create_backcalc_data(backcalc))
# gaussian process data
stan_data <- create_gp_data(gp, stan_data)
# observation model data
stan_data <- c(
stan_data,
create_obs_model(
obs,
dates = data[(stan_data$seeding_time + 1):.N]$date
)
)
# parameters
stan_data <- c(
stan_data,
create_stan_params(
alpha = gp$alpha,
rho = gp$ls,
R0 = rt$prior,
frac_obs = obs$scale,
dispersion = obs$dispersion,
lower_bounds = c(
alpha = 0,
rho = 0,
R0 = 0,
frac_obs = 0,
dispersion = 0
)
)
)
# rescale mean shifted prior for back calculation if observation scaling is
# used
stan_data$shifted_cases <-
stan_data$shifted_cases / mean(obs$scale)
return(stan_data)
}
##' Create initial conditions for delays
##'
##' @inheritParams create_initial_conditions
##' @return A list of initial conditions for delays
##' @keywords internal
create_delay_inits <- function(data) {
out <- list()
if (data$delay_n_p > 0) {
out$delay_params <- array(truncnorm::rtruncnorm(
n = data$delay_params_length, a = data$delay_params_lower,
mean = data$delay_params_mean, sd = data$delay_params_sd * 0.1
))
} else {
out$delay_params <- array(numeric(0))
}
return(out)
}
#' Create Initial Conditions Generating Function
#' @description `r lifecycle::badge("stable")`
#' Uses the output of [create_stan_data()] to create a function which can be
#' used to sample from the prior distributions (or as close as possible) for
#' parameters. Used in order to initialise each stan chain within a range of
#' plausible values.
#' @param data A list of data as produced by [create_stan_data()].
#' @return An initial condition generating function
#' @importFrom purrr map2_dbl
#' @importFrom truncnorm rtruncnorm
#' @importFrom data.table fcase
#' @keywords internal
create_initial_conditions <- function(data) {
init_fun <- function() {
out <- create_delay_inits(data)
if (data$fixed == 0) {
out$eta <- array(rnorm(
ifelse(data$gp_type == 1, data$M * 2, data$M),
mean = 0, sd = 0.1
))
} else {
out$eta <- array(numeric(0))
}
if (data$estimate_r == 1) {
out$initial_infections <- array(rnorm(1))
} else {
out$initial_infections <- array(numeric(0))
}
if (data$bp_n > 0) {
out$bp_sd <- array(truncnorm::rtruncnorm(1, a = 0, mean = 0, sd = 0.1))
out$bp_effects <- array(rnorm(data$bp_n, 0, 0.1))
} else {
out$bp_sd <- array(numeric(0))
out$bp_effects <- array(numeric(0))
}
if (data$week_effect > 0) {
out$day_of_week_simplex <- array(
rep(1 / data$week_effect, data$week_effect)
)
}
out$params <- array(truncnorm::rtruncnorm(
data$n_params_variable,
a = data$params_lower,
b = data$params_upper,
mean = 0, sd = 1
))
return(out)
}
return(init_fun)
}
#' Create a List of Stan Arguments
#'
#' @description `r lifecycle::badge("stable")`
#' Generates a list of arguments as required by the stan sampling functions by
#' combining the required options with data, and type of initialisation.
#' Initialisation defaults to random but it is expected that
#' [create_initial_conditions()] will be used.
#'
#' @param stan A list of stan options as generated by [stan_opts()]. Defaults
#' to [stan_opts()]. Can be used to override `data`, `init`, and `verbose`
#' settings if desired.
#'
#' @param data A list of stan data as created by [create_stan_data()]
#'
#' @param init Initial conditions passed to `{rstan}`. Defaults to "random"
#' (initial values randomly drawn between -2 and 2) but can also be a
#' function (as supplied by [create_initial_conditions()]).
#'
#' @param model Character, name of the model for which arguments are
#' to be created.
#' @param fixed_param Logical, defaults to `FALSE`. Should arguments be
#' created to sample from fixed parameters (used by simulation functions).
#'
#' @param verbose Logical, defaults to `FALSE`. Should verbose progress
#' messages be returned.
#'
#' @importFrom utils modifyList
#'
#' @return A list of stan arguments
#' @keywords internal
#' @examples
#' \dontrun{
#' # default settings
#' create_stan_args()
#'
#' # increasing warmup
#' create_stan_args(stan = stan_opts(warmup = 1000))
#' }
create_stan_args <- function(stan = stan_opts(),
data = NULL,
init = "random",
model = "estimate_infections",
fixed_param = FALSE,
verbose = FALSE) {
if (fixed_param) {
if (stan$backend == "rstan") {
stan$algorithm <- "Fixed_param"
} else if (stan$backend == "cmdstanr") {
stan$fixed_param <- TRUE
stan$adapt_delta <- NULL
stan$max_treedepth <- NULL
}
}
## generate stan model
if (is.null(stan$object)) {
stan$object <- epinow2_stan_model(stan$backend, model)
stan$backend <- NULL
}
# cmdstanr doesn't have an init = "random" argument
if (is.character(init) && init == "random" &&
inherits(stan$object, "CmdStanModel")) {
init <- 2
}
# set up shared default arguments
args <- list(
data = data,
init = init,
refresh = ifelse(verbose, 50, 0)
)
args <- modifyList(args, stan)
args$return_fit <- NULL
return(args)
}
##' Create delay variables for stan
##'
##' @param ... Named delay distributions. The names are assigned to IDs
##' @param time_points Integer, the number of time points in the data;
##' determines weight associated with weighted delay priors; default: 1
##' @return A list of variables as expected by the stan model
##' @importFrom purrr transpose map flatten
##' @keywords internal
create_stan_delays <- function(..., time_points = 1L) {
delays <- list(...)
## discretise
delays <- map(delays, discretise, strict = FALSE)
delays <- map(delays, collapse)
## get maximum delays
bounded_delays <- map(delays, function(x) discretise(fix_parameters(x)))
max_delay <- unname(as.numeric(flatten(map(bounded_delays, max))))
## number of different non-empty types
type_n <- vapply(delays, ndist, integer(1))
## assign ID values to each type
ids <- rep(0L, length(type_n))
ids[type_n > 0] <- seq_len(sum(type_n > 0))
names(ids) <- paste(names(type_n), "id", sep = "_")
## create "flat version" of delays, i.e. a list of all the delays (including
## elements of composite delays)
if (length(delays) > 1) {
flat_delays <- do.call(c, delays)
} else {
flat_delays <- delays
}
parametric <- unname(vapply(
flat_delays, function(x) get_distribution(x) != "nonparametric", logical(1)
))
param_length <- unname(vapply(flat_delays[parametric], function(x) {
length(get_parameters(x))
}, numeric(1)))
nonparam_length <- unname(vapply(flat_delays[!parametric], function(x) {
length(x$pmf)
}, numeric(1)))
distributions <- unname(as.character(
map(flat_delays[parametric], get_distribution)
))
## create stan object
ret <- list(
n = length(flat_delays),
n_p = sum(parametric),
n_np = sum(!parametric),
types = sum(type_n > 0),
types_p = array(as.integer(parametric))
)
## delay identifiers
ret$types_id <- integer(0)
ret$types_id[ret$types_p == 1] <- seq_len(ret$n_p)
ret$types_id[ret$types_p == 0] <- seq_len(ret$n_np)
ret$types_id <- array(ret$types_id)
## map delays to identifiers
ret$types_groups <- array(c(0, cumsum(unname(type_n[type_n > 0]))) + 1)
ret$params_mean <- array(unname(as.numeric(
map(flatten(map(flat_delays[parametric], get_parameters)), mean)
)))
ret$params_sd <- array(unname(as.numeric(
map(flatten(map(flat_delays[parametric], get_parameters)), sd)
)))
ret$params_sd[is.na(ret$params_sd)] <- 0
ret$max <- array(max_delay[parametric])
ret$np_pmf <- array(unname(as.numeric(
flatten(map(flat_delays[!parametric], get_pmf))
)))
## get non zero length delay pmf lengths
ret$np_pmf_groups <- array(c(0, cumsum(nonparam_length)) + 1)
## calculate total np pmf length
ret$np_pmf_length <- sum(nonparam_length)
## get non zero length param lengths
ret$params_groups <- array(c(0, cumsum(param_length)) + 1)
## calculate total param length
ret$params_length <- sum(param_length)
## set lower bounds
ret$params_lower <- array(unname(as.numeric(flatten(
map(flat_delays[parametric], function(x) {
lower_bounds(get_distribution(x))[names(get_parameters(x))]
})
))))
## assign prior weights
weight_priors <- vapply(
delays[parametric], attr, "weight_prior",
FUN.VALUE = logical(1)
)
ret$weight <- array(rep(1, ret$n_p))
ret$weight[weight_priors] <- time_points
## assign distribution
ret$dist <- array(match(distributions, c("lognormal", "gamma")) - 1L)
names(ret) <- paste("delay", names(ret), sep = "_")
ret <- c(ret, ids)
return(ret)
}
##' Create parameters for stan
##'
##' @param ... Named delay distributions. The names are assigned to IDs
##' @param lower_bounds Named vector of lower bounds for any delay(s). The names
##' have to correspond to the names given to the delay distributions passed.
##' If `NULL` (default) no parameters are given a lower bound.
##' @return A list of variables as expected by the stan model
##' @importFrom data.table fcase
##' @keywords internal
create_stan_params <- function(..., lower_bounds = NULL) {
params <- list(...)
## set IDs of any parameters that is NULL to 0 and remove
null_params <- vapply(params, is.null, logical(1))
null_ids <- rep(0, sum(null_params))
if (length(null_ids) > 0) {
names(null_ids) <- paste(names(null_params)[null_params], "id", sep = "_")
params <- params[!null_params]
}
## initialise variables
params_fixed_lookup <- rep(0L, length(params))
params_variable_lookup <- rep(0L, length(params))
## identify fixed/variable parameters
fixed <- vapply(params, get_distribution, character(1)) == "fixed"
params_fixed_lookup[fixed] <- seq_along(which(fixed))
params_variable_lookup[!fixed] <- seq_along(which(!fixed))
## lower bounds
params_lower <- rep(-Inf, length(params[!fixed]))
names(params_lower) <- names(params[!fixed])
lower_bounds <- lower_bounds[names(params_lower)]
params_lower[names(lower_bounds)] <- lower_bounds
## upper bounds
params_upper <- vapply(params[!fixed], max, numeric(1))
## prior distributions
prior_dist_name <- vapply(params[!fixed], get_distribution, character(1))
prior_dist <- fcase(
prior_dist_name == "lognormal", 0L,
prior_dist_name == "gamma", 1L,
prior_dist_name == "normal", 2L
)
## parameters
prior_dist_params <- lapply(params[!fixed], get_parameters)
prior_dist_params_lengths <- lengths(prior_dist_params)
## check none of the parameters are uncertain
prior_uncertain <- vapply(prior_dist_params, function(x) {
!all(vapply(x, is.numeric, logical(1)))
}, logical(1))
if (any(prior_uncertain)) {
uncertain_priors <- names(params[!fixed])[prior_uncertain] # nolint: object_usage_linter
cli_abort(
c(
"!" = "Parameter prior distribution{?s} for {.var {uncertain_priors}}
cannot have uncertain parameters."
)
)
}
prior_dist_params <- unlist(prior_dist_params)
if (is.null(prior_dist_params)) {
prior_dist_params <- numeric(0)
}
## extract distributions and parameters
ret <- list(
n_params_variable = length(params) - sum(fixed),
n_params_fixed = sum(fixed),
params_lower = array(params_lower),
params_upper = array(params_upper),
params_fixed_lookup = array(params_fixed_lookup),
params_variable_lookup = array(params_variable_lookup),
params_value = array(vapply(
params[fixed], function(x) get_parameters(x)$value, numeric(1)
)),
prior_dist = array(prior_dist),
prior_dist_params_length = sum(prior_dist_params_lengths),
prior_dist_params = array(prior_dist_params)
)
ids <- seq_along(params)
if (length(ids) > 0) {
names(ids) <- paste(names(params), "id", sep = "_")
}
ret <- c(ret, as.list(ids), as.list(null_ids))
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.