Nothing
#' Functional linear regression model
#'
#' Functional linear regression model in which the response variable is a scalar variable
#' whereas the independent variables are functional variables. Independent variables could also be scalar variables.
#'
#' @param formula a formula expression of the form \code{response ~ predictors}. On the left side of the formula, \code{y} is a numeric variable whereas on the right side,
#' \code{X} can be either functional data object of class \code{fd} or a scalar variable of class \code{numeric}. The length of a scalar variable must equal the length
#' of a response variable. Similarly, the number of observations of a functional covariate must equal the length of a response variable.
#' @param betalist an optional argument. A list which contains beta regression coefficient functions for independent variables.
#' If betalist is not provided, the number of estimated beta regression coefficient functions for one functional covariate would equal the number of basis functions used to represent that functional covariate.
#' For a scalar variable, beta regression coefficient function is also a functional object whose basis is constant.
#' Needless to say, for a scalar variable, there will be one beta regression coefficient.
#'
#' @return \item{call}{ call of the lfreg function}
#' @return \item{x.count}{ number of predictors}
#' @return \item{xfdlist}{ a list of functional data objects. The length of the list is equal to the number of predictors}
#' @return \item{betalist}{ a list of beta regression coefficient functions}
#' @return \item{coefficients}{ estimated beta regression coefficient functions}
#' @export freg
#'
#' @examples
#' library(fda)
#' y = log10(apply(daily$precav,2,sum))
#' x = daily$tempav
#' xbasis = create.fourier.basis(c(1,365),5) # 5 basis functions
#' # smoothing of the data and extraction of functional data object
#' xfd=smooth.basis(c(1:365),x,xbasis)$fd
#' formula = y ~ xfd
#' # betalist is an optional argument
#' bbasis = create.fourier.basis(c(1,365),5) # 5 basis functions
#' betalist = list(bbasis)
#' freg.model = freg(formula = formula, betalist = betalist)
#'
#' # Functional variable and two scalar variables
#' latitude = CanadianWeather$coordinates[,1]
#' longitude = CanadianWeather$coordinates[,2]
#' xfdlist = list(xfd, latitude, longitude)
#' cbasis = create.constant.basis(c(1,365))
#' betalist = list(bbasis, cbasis, cbasis)
#' formula = y ~ xfd + latitude + longitude
#' freg.model = freg(formula = formula, betalist = betalist)
#' print(freg.model$coefficients)
#'
freg = function(formula, betalist = NULL){
# extract y from formula
call = match.call()
y.name = formula[[2]]
y = get(as.character(y.name)) # search y by name
y.len = length(y)
if (inherits(y, c("factor", "matrix", "array"), FALSE))
stop("Y has to be numeric")
# extract independent variables from formula
x.var = all.vars(formula)[-1]
x.count = length(x.var)
xfdlist = vector('list', length = x.count) # stock them in the list
names(xfdlist) = x.var
type = c()
nbasis = c()
df = lapply(x.var, get)
no = which(lapply(df, class)=="fd")
if(length(no)>1){
range = get(x.var[no[1]])$basis$range # take range from the first fd
}else range = get(x.var[no])$basis$range
# if (inherits(get(x.var), what = "fd")){
# x.fun = get(x.var)
# range = x.fun$basis$rangeval
# }else stop("Please enter a functional covariate")
bbasis.names = vector('list', length = x.count) # to stock beta basis
for(i in 1:x.count){
x = get(x.var[i])
if(inherits(x, what = "fd")){
type[i] = x$basis$type
nbasis[i] = x$basis$nbasis
x.len = dim(x$coefs)[2]
#range = x$basis$rangeval
}else if(inherits(x, what = "numeric")){
cbasis = create.constant.basis(rangeval = range)
x.len = length(x)
x = fd(matrix(x,1,y.len),cbasis)
#x.len = dim(x$coefs)[2]
}
if(x.len != y.len)
stop('The number of observations of ',x.var[i], ' is ', x.len,
' and is not equal to the number of observations of y ', y.len)
if(!class(x) %in% c("fd", "numeric"))
stop('Variable ', x.var[i], ' has to be either fd or numeric')
# for freg include intercept
#cbasis = create.constant.basis(c(0, x$basis$rangeval[2])) # what if first var is scalar...
#xfdlist[[1]] = fd(matrix(1,1,y.len),cbasis)
#xfdlist[[i+1]] = x
xfdlist[[i]] = x # continue without intercept..
# create betalist
if(is.null(betalist)){
betalist = vector('list', length = x.count)
#bbasis.names = vector('list', length = x.count)
}
if(is.null(betalist[[i]])){
if(class(x) %in% "fd"){
bbasis = with(x, fd(basis = basis, fdnames = fdnames))$basis
#betalist[[i]] = bbasis
}else if(class(x) %in% "numeric"){
bbasis = create.constant.basis(rangeval = range)
#betalist[[i]] = bbasis
}
betalist[[i]] = bbasis
#bbasis.names[[i]] = betalist[[i]]$names
# }else if(!is.null(betalist[[i]])){
# bbasis.names[[i]] = betalist[[i]]$names
}else if(length(betalist) != length(xfdlist)){
stop('length(betalist) is ', length(betalist),
' but it must be equal to the number of independent variables ',length(xfdlist))
betaclass = sapply(betalist, class)
wrong = which(betaclass != 'basisfd')
if(length(wrong) > 0)
stop('All components of betalist must have class basisfd')
}
bbasis.names[[i]] = betalist[[i]]$names
}
# estimation
p = length(xfdlist) # constant and independent functional variables
y = as.matrix(y)
N = dim(y)[1] # number of observations
Z = NULL
betacoef = NULL
# for any number of covariates
for (i in 1:p) {
xfdi = xfdlist[[i]]
xcoef = xfdi$coefs
xbasis = xfdi$basis
bbasis = betalist[[i]]
basis.prod = romberg_alg(xbasis,bbasis) # call of a function romberg_alg
Z = cbind(Z, crossprod(xcoef, basis.prod))
# Beta coefficients
Z_prim = as.matrix(t(Z) %*% Z)
Z_prim.inv = solve(Z_prim)
DZ = t(Z) %*% y
betacoef = Z_prim.inv %*% DZ
}
rownames(betacoef) = paste("X", unlist(bbasis.names), sep = ".")
bbasis = betalist
instance = list()
instance$call = call
instance$no.var = x.count
instance$xfdlist = xfdlist
instance$betalist = betalist
instance$coefficients = betacoef
class(instance) = "freg"
return(instance)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.