inst/scripts/ch02.R

### ch. 2.  Linear Time Series Analysis and Its Applications 
###
### 
### Ruey S. Tsay (2005)
### Analysis of Financial Time Series, 2nd ed.
### (Wiley)
###
### 
library(FinTS)
# p. 24

# p. 25 
##
## sec. 2.1.  Stationarity 
##

##
## sec. 2.2.  Correlation and Autocorrelation Function 
##

# p.  28  
# Figure 2.1.  Sample ACFs of monthly simple and log returns
#              of IBM stock, Jan. 1926 - Jan. 1997 
data(m.ibm2697)
str(m.ibm2697)
quantile(as.numeric(m.ibm2697))
op <- par(mfrow=c(2,1))
Acf(m.ibm2697, lag.max=100,
    main="(a) Simple returns")
Acf(log(1+m.ibm2697), lag.max=100,
    main="(b) Log returns")
par(op)
# To match the y axis limits, add ylim=c(-.2, .2)
op <- par(mfrow=c(2,1))
Acf(m.ibm2697, lag.max=100, ylim=c(-.2, .2), 
    main="(a) Simple returns")
Acf(log(1+m.ibm2697), lag.max=100, ylim=c(-.2, .2), 
    main="(b) Log returns")
par(op)

Box.test(m.ibm2697, 5, "Ljung-Box")
Box.test(m.ibm2697, 10, "Ljung-Box")

Box.test(log(1+m.ibm2697), 5, "Ljung-Box")
Box.test(log(1+m.ibm2697), 10, "Ljung-Box")

AutocorTest(m.ibm2697, 5)
AutocorTest(m.ibm2697, 10)

AutocorTest(log(1+m.ibm2697), 5)
AutocorTest(log(1+m.ibm2697), 10)

# p. 29  
# Figure 2.2.  Sample ACFs of monthly simple and log returns
#              of the value weighted index, Jan. 1926 - Jan. 1997 
data(m.vw2697)
op <- par(mfrow=c(2, 1))
Acf(m.vw2697, lag.max=100, main="(a) Simple returns")
Acf(log(1+m.vw2697), lag.max=100, main="(b) Log returns")
par(op)

# R function in stats package 
Box.test(m.vw2697, 5, "Ljung-Box")
Box.test(m.vw2697, 10, "Ljung-Box")

Box.test(log(1+m.vw2697), 5, "Ljung-Box")
Box.test(log(1+m.vw2697), 10, "Ljung-Box")

# FinTS function in Tsay, p. 30 
AutocorTest(m.vw2697, 5)
AutocorTest(m.vw2697, 10)

AutocorTest(log(1+m.vw2697), 5)
AutocorTest(log(1+m.vw2697), 10)

# p. 31
##
## sec. 2.3.  White Noise and Linear Time Series 
##

# p. 32  
##
## sec. 2.4.  Simple Autoregressive Models 
##

# p. 35
# Figure 2.3.  Autocorrelation function of AR(1) models 

op <- par(mfcol=c(1,2))
ph <- 0.8
plotArmaTrueacf(ph, lag.max=8)
mtext(paste("(a) AR(1) model for phi = ",
    substitute(p, list(p=ph))), cex=1.1, line=1)

ph <- (-0.8)
plotArmaTrueacf(ph, lag.max=8)
mtext(paste("(a) AR(1) model for phi = ",
    substitute(p, list(p=ph))), cex=1.1, line=1)

par(op)

# p. 37
# Figure 2.4.  Autocorrelation Function of AR(2) models

op <- par(mfcol=c(2,2))
ph <- c(1.2, -.35)
plotArmaTrueacf(ph)
mtext(paste("(a) AR(2) model for phi = (",
            paste(ph, collapse=", "), ")", sep=""), cex=1.1, line=1)

ph <- c(.6, -.4)
plotArmaTrueacf(ph)
mtext(paste("(b) AR(2) model for phi = (",
            paste(ph, collapse=", "), ")", sep=""), cex=1.1, line=1)

ph <- c(.2, .35)
plotArmaTrueacf(ph)
mtext(paste("(c) AR(2) model for phi = (",
            paste(ph, collapse=", "), ")", sep=""), cex=1.1, line=1)

ph <- c(-.2, .35)
plotArmaTrueacf(ph)
mtext(paste("(d) AR(2) model for phi = (",
            paste(ph, collapse=", "), ")", sep=""), cex=1.1, line=1)
par(op)

# p. 38
# Example 2.1.  Quarterly growth rate of real US GNP 
# Figure 2.5.  
data(q.gnp4791)
plot(q.gnp4791, type="b", xlab="year", ylab="growth")
abline(h=0)

(fit.ar3 <- ar(q.gnp4791, aic=FALSE, order=3))
# 0.3463   0.1770  -0.1421  sigma^2 estimated as  9.676e-05
class(fit.ar3) # ar 

(fit.ar3.burg <- ar.burg(q.gnp4791, aic=FALSE, order=3))
# 0.3474   0.1807  -0.1436  sigma^2 estimated as  9.427e-05
class(fit.ar3.burg) # ar 

(fit.ar3.yw <- ar.yw(q.gnp4791, aic=FALSE, order=3))
# 0.3480   0.1793  -0.1423  sigma^2 estimated as  9.427e-05
class(fit.ar3.yw) # ar 

(fit.ar3.mle <- ar.mle(q.gnp4791, aic=FALSE, order=3))
# 0.3480   0.1793  -0.1423  sigma^2 estimated as  9.427e-05
class(fit.ar3.mle) # ar 

(fit.ar3.ols <- ar.ols(q.gnp4791, aic=FALSE, order=3))
# 0.3509   0.1809  -0.1443  sigma^2 estimated as  9.563e-05 
class(fit.ar3.ols) # ar 

names(fit.ar3.mle)
str(fit.ar3.mle)

plotArmaTrueacf(fit.ar3.mle)

# period = 10.57 quarters
# vs. 10.83 in the book.  
# 

# p. 41-42
##
## Table 2.1.  Sample PACF and AIC for CRSP value-weighted Index
##

data(m.vw2697)
str(m.vw2697)
(pacf.vw <- pacf(m.vw2697, lag.max=10))
# "lag" in the function call is integer number of periods
# "lag" in the output is in fractions of years, so .083 = 1 month, etc.
2/sqrt(length(m.vw2697))

AIC5 <- array(NA, dim=c(11, 5),dimnames=list(0:10,
             c("yule-walker", "burg", "ols", "mle", "yw")))
for(i in 1:5)
  AIC5[, i] <- ar(m.vw2697, order.max=10,
      method=dimnames(AIC5)[[2]][i])$aic

all.equal(AIC5[, 1], AIC5[, 5])
# TRUE 

AIC.Tsay <- c(-5.807, -5.805, -5.817, -5.816, -5.819,
              -5.821, -5.819, -5.820, -5.821, -5.818)

AIC.Tsay-min(AIC.Tsay)
round(AIC5[,-1]/length(m.vw2697), 3)

# Tsay's definition of the AIC differs from the definition used in R
# by a factor of the number of observations.

# Apart from this difference, the numbers in Table 2.1
# seem to follow most closely method="burg" 
# showing 1 discrepancy out of 10 vs. 3 out of 10
# for the Yule-Walker and MLE alternatives.
# "ols" is very different from the others.

# pp. 41-42 
##
## Figure 2.6.  Sample PACF of US Quarterly real GNP growth 
##
data(q.gnp4791)
pacf(q.gnp4791, lag.max=12)

q.gnp4791.ar <- ar(q.gnp4791)
round(q.gnp4791.ar$aic, 3)
# NOTE:  The 'AICs' printed on p. 43 follow the definition
# of AIC used by R, NOT the definition on p. 42;
# Tsay's definition divides the R definition
# by the length of the series.

q.gnp4791.ar$order

data(m.vw2697) 
(ar.vw. <- ar(m.vw2697, order.max=3))
(ar.vw <- arima(m.vw2697, c(3,0,0)))

mean(m.vw2697)
# 0.009879116
sum(coef(ar.vw)[1:3])
# -0.02538
# phi0 = mu*(1-sum(phi))
mean(m.vw2697)*(1-sum(coef(ar.vw)[1:3]))
# 0.01013


names(ar.vw.)
ar.vw.$ar # match bottom of p. 43
ar.vw.$x.mean # vs. 0.0103 on p. 43
sqrt(ar.vw.$var.pred) # match bottom of p. 43

# p. 44
(fit.3 <- ARIMA(m.vw2697, order=c(3, 0, 0),
                Box.test.lag=12))
fit.3$Box.test
# X-squared = 16.7 vs. 16.9 in the book
# p-value = 0.053 vs. 0.050 in the book 

# drop the AR(2) parameter, estimate only the AR(1) and AR(3)
(fit.2 <- ARIMA(m.vw2697, order=c(3, 0, 0),
                fixed=c(NA, 0, NA, NA),
                Box.test.lag=12))
fit.2$Box.test
# X-squared = 17.0 vs. 17.2 in the book
# p-value = 0.075 vs. 0.070 in the  book 


# p. 49
# Table 2.2.  AR(3) Forecasts for Monthly Simple Returns of VW Index 
methods(class="Arima")
length(m.vw2697)
# 864
ar.vw858 <- arima(m.vw2697[1:858], order=c(3,0,0))

(pred.ar.vw <- predict(ar.vw858, 6))
# actual
m.vw2697[859:864]

# Figure 2.7.  AR(5) Forecasts for Monthly Log Returns of VW Index
(ar.vw858l <- arima(log(1+m.vw2697[1:858]), order=c(5,0,0)))
sqrt(ar.vw858l$sigma2)
# all the numbers match p. 50 except 'intercept'
str(ar.vw858l)
(1-sum(coef(ar.vw858l)[1:5]))*coef(ar.vw858l)["intercept"]

(pred.ar.vwl <- predict(ar.vw858l, 6))


ul <- c(log(1+m.vw2697[858]), with(pred.ar.vwl, pred+1.96*se))
ll <- c(log(1+m.vw2697[858]), with(pred.ar.vwl, pred-1.96*se))

plot(log(1+m.vw2697[851:864]),
     type="b", ylim=range(ul, ll))
lines(index(m.vw2697)[858:864], c(log(1+m.vw2697[858]), pred.ar.vwl$pred),
      type="b", col="red", lty="dashed")
lines(index(m.vw2697)[858:864], 
      ul, type="b", col="green", lty="dotted")
lines(index(m.vw2697)[858:864], 
      ll, type="b", col="green", lty="dotted")

plot(log(1+m.vw2697[851:864]), type="b", ylim=c(-.2, .2),
     xlab="year (and fraction)", ylab="vw")
lines(index(m.vw2697)[858:864], c(log(1+m.vw2697[858]), pred.ar.vwl$pred),
      type="b", col="red", lty="dashed")
lines(index(m.vw2697)[858:864], 
      ul, type="b", col="green", lty="dotted")
lines(index(m.vw2697)[858:864], 
      ll, type="b", col="green", lty="dotted")

##
## sec. 2.5.  Simple Moving Average Models
##

# p. 52-53
# Figure 2.8
# Monthly simple returns of CRSP equal-weighted index
# from January 1926 to December 2003
# ... used in chapter 1
data(m.ibmvwewsp2603)
str(m.ibmvwewsp2603)

op <- par(mfrow=c(2,1))
plot(m.ibmvwewsp2603[, "EW"], main="(a) Monthly simple returns",
     xlab="year", ylab="s-rtn")
Acf(as.numeric(m.ibmvwewsp2603[, "EW"]), main="(b) Sample ACF")
par(op)

# p. 54
(fit.ew <- ARIMA(as.numeric(m.ibmvwewsp2603[, "EW"]), order=c(0, 0, 9),
             fixed=c(NA, 0, NA, rep(0, 5), NA, NA),
             Box.test.lag=12))
fit.ew$Box.test

# pp. 55-56
##
## Table 2.3.  MA(9) Forecasts for EW
##
# data documented with ch01data, not ch02data 
data(m.ibmvwewsp2603)
str(m.ibmvwewsp2603)
plot(m.ibmvwewsp2603[, "EW"])
abline(v=index(m.ibmvwewsp2603)[926], col="green", lty="dashed")

(ma9.ew926 <- arima(as.numeric(m.ibmvwewsp2603[1:926, 'EW']),
                    order=c(0,0,9)))
# The numbers don't match perfectly, but they are moderately close.
# The difference may be due to difference in the accuracy of
# the algorithm in finding the actual maximum of the likelihood
# or to the likelihood surfact being fairly flat.

(pred.ma9.ew936 <- predict(ma9.ew926, 10))
# actual
m.ibmvwewsp2603[927:936, "EW"]

##
## sec. 2.6.  Simple ARMA Models
##

# pp. 59-60
data(m.3m4697)
str(m.3m4697)
quantile(m.3m4697)

op <- par(mfrow=c(2,1))
plot(log(1+m.3m4697), xlab="year", ylab="l-rtn")
# Figure 2.9 has the noninformative spike at lag 0 
# so use 'acf' rather than 'Acf' 
acf(as.numeric(m.3m4697), main="")
par(op)

#eacf.3m <- eacf(m.3m4697, 6, 12) # 'eacf' function not yet available' 
#print(eacf.3m, 2) 
#print(eacf.3m) 
# This may be due to differences in how the arima parameters
# are estimated, e.g, maximum likelihood vs. Yule-Walker.  

# p. 64 
##
## sec. 2.7.  Unit-Root Nonstationarity
##

# p. 66
data(m.3m4697)
(mean.log.3m <- mean(log(1+m.3m4697)))
sd(log(1+m.3m4697))

# Figure 2.10.  Log prices for 3M stock

log.3m <- cumsum(log(1+m.3m4697))
log.3m0 <- cumsum(log(1+m.3m4697)-mean.log.3m)

plot(log.3m, ylim=range(log.3m, log.3m0),
     xlab="year", ylab="log-price")
lines(log.3m0, lty="dotted", col="red")
t4697 <- index(log.3m)
lines(t4697, mean.log.3m*(1:length(m.3m4697)))

# p. 69
# Example 2.2.  US quarterly GDP
data(q.gdp4703)

# p. 70
# Figure 2.11.  
op <- par(mfcol=c(2,2))
plot(log(q.gdp4703), xlab="year", ylab="ln(GDP)",
     main="(a)")

Acf(log(q.gdp4703), lag.max=16, main="(b)", xlab="lag (years)")

#plot(diff(q.gdp4703), xlab="year", ylab="diff(GDP)", main="(c)")
# This is clearly NOT Figure 2.20.  
plot(diff(log(q.gdp4703)), xlab="year", ylab="diff(ln(GDP))",
     main="(c)")
# Looks like Figure 2.10(c)

pacf(diff(log(q.gdp4703)), lag.max=16, main="(d)",
     xlab="lag (years)")
par(op)

qqnorm(diff(log(q.gdp4703)), datax=TRUE)
abline(h=c(-2, 2))
abline(h=-1.9)
pnorm(-1.9)
# 0.029 
# Slightly nonnormal, with just over 5%
# of observations = mild outliers.  
# Therefore, I don't theink we need to worry about
# nonnormality.

# There are 4 functions in different contributed packages in R
# for the Augmented Dickey-Fuller test:
# adf.test{tseries} by A. Trapletti
# adfTest{fUnitRoots} by Diethelm Wuertz,
#                 based on Trapletti's algorithm 
# ur.df{urca} by Bernhard Pfaff
# ADF.test{uroot} by Javier López-de-Lacalle

data(q.gdp4703)
adf.Unitroot <- Unitroot(log(q.gdp4703), trend='c', method='adf', lags=10)
summary(adf.Unitroot)

# Try the 4 ADF functions mentioned above:  
library(tseries)
l.gdp <- log(as.numeric(q.gdp4703))
adf.test(l.gdp, alternative="stationary", k=9)
#Dickey-Fuller = -0.7959, Lag order = 9, p-value = 0.9608
#alternative hypothesis: stationary
# None of the numbers match the book.  I don't know why.  

library(urca)
(fadf.c.l.gdp <- ur.df(log(q.gdp4703), type="drift", lags=9))
summary(fadf.c.l.gdp)
#Value of test-statistic is: -1.1306 7.0185 
#Critical values for test statistics: 
#      1pct  5pct 10pct
#tau2 -3.46 -2.88 -2.57
#phi1  6.52  4.63  3.81

library(fUnitRoots)
(fadf.c.l.gdp <- adfTest(log(q.gdp4703), type="c", lags=9))
# Dickey-Fuller: -1.1306;  P VALUE: 0.6358 
# The statistic is correct, but the p-value is off.  
 
library(uroot)
gdp.uroot <- ts(log(q.gdp4703), frequency=4, start=c(1947,1))

ADF.d.l.gdp <- ADF.test(gdp.uroot, c(1,0,0),
                        selectlags=list(mode=as.numeric(1:9)))
#Warning message:
#In interpolpval(code = code, stat = adfreg[, 3], N = N) :
#  p-value is greater than printed p-value
ADF.d.l.gdp
summary(ADF.d.l.gdp@lmadf)
# This call to ADF.test produces essentially the same answer
# as S-Plus unitroot, apart from the p-value 

# p. 71
# Figure 2.12.  log(S&P 500), 1990.01.02 - 2003.12.31

data(d.sp9003lev)
plot(log(d.sp9003lev), xlab="year", ylab="ln(index)")

# p. 72 
sp.Unitroot <- Unitroot(log(d.sp9003lev), trend='ct', method='adf', lags=14)
summary(sp.Unitroot)

# p. 73
##
## sec. 2.8.  Seasonal Models
##
data(q.jnj)

op <- par(mfcol=c(2,1))
plot(q.jnj, xlab="year", ylab="earnings",
     main="(a) Earnings per share", type="o") 
plot(log(q.jnj), xlab="year", ylab="ln-earnings",
     main="(b) Log earnings per share", type="o")
par(op)

# p. 74
# Figure 2.14.
# all plots have the unit spike at lag 0, so use 'acf' not 'Acf'
op <- par(mfcol=c(2,2))
acf(log(q.jnj))
acf(diff(log(q.jnj)), main="Series:  dx")
acf(diff(log(q.jnj), 4), main="Series:  ds")

dxds <- diff(diff(log(q.jnj)), 4)
dsdx <- diff(diff(log(q.jnj), 4))
all.equal(dxds, dsdx)
# TRUE 
acf(dxds, main="Series:  dxds")
par(op)

# p. 76
# Example 2.3

(fit.jnj <- arima(log(q.jnj), order=c(0, 1, 1),
                 seasonal=list(order=c(0, 1, 1))))
#str(fit.jnj)
sqrt(fit.jnj$sigma2)

# Figure 2.15
# p. 76-77
fit.jnj76 <- arima(log(q.jnj[1:76]), order=c(0, 1, 1),
                 seasonal=list(order=c(0, 1, 1)))
(pred.jnj76 <- predict(fit.jnj76, 8))

#str(q.jnj)
plot(q.jnj[71:84], xlab="year", ylim=c(0, 30),
     ylab="earning")
points(exp(pred.jnj76$pred))
ul <- with(pred.jnj76, pred+1.96*se)
ll <- with(pred.jnj76, pred-1.96*se)

lines(exp(ul), col="red", lty="dashed")
lines(exp(ll), col="red", lty="dashed")

# Example 2.4
data(m.decile1510)
str(m.decile1510)

# p. 78
op <- par(mfcol=c(2,2))

plot(m.decile1510[,"Decile1"], xlab="year", ylab="s-rtn",
     main="(a) Simple returns")

Acf(as.numeric(m.decile1510[,"Decile1"]), lag.max=36,
    main="(b) Sample ACF")

#fit.dec1 <- arima(m.decile1510[, "Decile1"], c(1, 0, 0),
#                  seasonal=list(order=c(1, 0, 1), period=12))
#Error in solve.default(res$hessian * n.used) : 
#  Lapack routine dgesv: system is exactly singular

# 'arima' works fine in this case when 'zoo' (loaded with 'FinTS')
# is NOT in the search path.  The problem is that 'arima' calls
# 'as.ts(x)', and 'as.ts' is a generic function that acts
# differently depending on whether 'zoo' is in the path.

# To work around this, convert the 'index' from class 'Date'
# to class 'yearmon', as indicated in the 'examples' in the
# 'm.decile1510' help file:

mDecile1510 <- zoo(m.decile1510, as.yearmon(index(m.decile1510)))
fit.dec1 <- arima(mDecile1510[, "Decile1"], c(1, 0, 0),
                  seasonal=list(order=c(1, 0, 1), period=12))
fit.dec1
# The parameter estimates here are likely
# slightly more accurate than those in the book.

#str(fit.dec1)
# Find attribute 'sigma2'
# via 'str' or reading help('arima')
sqrt(fit.dec1$sigma2)

fit.dec1CSS <- arima(mDecile1510[, "Decile1"], c(1, 0, 0),
                  seasonal=list(order=c(1, 0, 1), period=12),
                  method="CSS")
fit.dec1CSS
sqrt(fit.dec1CSS$sigma2) 
# Mostly match the conditional likelihood answers 

m.dec.index <- index(m.decile1510)
str(m.dec.index)
#Class 'Date'  num [1:528] -3625 -3594 -3563 -3534 -3502 ...

Jan <- (months(m.dec.index)=="January")

fitJan <- lm(m.decile1510[, "Decile1"] ~ Jan)

rtn.jan <- residuals(fitJan)

plot(rtn.jan, xlab="year", ylab="rtn - jan",
     main="(c) January-adjusted returns")

Acf(as.numeric(rtn.jan), main="(d) Sample ACF")

par(op)

# p. 80
##
## sec. 2.9.  Regression Models with Time Series Errors
##
data(w.gs1n36299)
# See ?ch02data:  
w.gs1n3 <- window(w.gs1n36299, start=as.Date("1962-01-12"),
    end=as.Date("1999-09-10"))

# Figure 2.17
plot(w.gs1n3[, "gs1"], xlab="year", ylab="percent")
lines(w.gs1n3[, "gs3"], col="red", lty="dashed")

# Figure 2.18
op <- par(mfcol=c(1,2))
plot(gs3~gs1, data=as.data.frame(w.gs1n3), xlab="1-year", ylab="3-year",
     main="(a)")

dw.gs1n3 <- diff(w.gs1n3)
plot(gs3~gs1, data=as.data.frame(dw.gs1n3),
     xlab="chg 1yr", ylab="chg 3yr", main="(b)")
par(op)

naiveFit <- lm(gs3~gs1, as.data.frame(w.gs1n3))
# comparable to 'fit=OLS(r3t~r1t)' on p. 86
summary(naiveFit)

naive.resids <- residuals(naiveFit)

# p. 82
# Figure 2.19

op <- par(mfrow=c(2,1))
plot(index(w.gs1n3), naive.resids, type="l",
     xlab='year', ylab='residual', main='(a)')

Acf(naive.resids, main='(b)')
par(op)

naiveFit.d.gs <- lm(gs3~gs1, as.data.frame(dw.gs1n3))
# comparable to 'fit1=OLS(c3t~c11t) on p. 86
# or 'reg.fit = OLS(dgs3~dgs1) on p. 88 
summary(naiveFit.d.gs)

# p. 83
# Figure 2.20

op <- par(mfrow=c(2,1))
plot(dw.gs1n3[, "gs1"], ylim=c(-2, 2),
     xlab="year", ylab="per. chg.", main="(a) Change in 1-year rate")
plot(dw.gs1n3[, "gs3"], ylim=c(-2, 2),
     xlab="year", ylab="per. chg.", main="(a) Change in 3-year rate")
par(op)

# p. 84
# Figure 2.21
naiveResids.d.gs <- residuals(naiveFit.d.gs)

op <- par(mfrow=c(2,1))
plot(index(dw.gs1n3), naiveResids.d.gs, type="l", 
     xlab="year", ylab="residual", main="(a)")

acf(naiveResids.d.gs, main="(b)")
par(op)

fit.d.gs <- ARIMA(dw.gs1n3[, "gs3"], c(0, 0, 1), xreg=dw.gs1n3[, "gs1"])
fit.d.gs
#str(fit.d.gs)
signif(sqrt(fit.d.gs$sigma2), 3)
signif(fit.d.gs$r.squared, 4)

# p. 85
fit.d.gs0 <- ARIMA(dw.gs1n3[, "gs3"], c(0, 0, 1), xreg=dw.gs1n3[, "gs1"],
                   include.mean=FALSE)
fit.d.gs0
signif(sqrt(fit.d.gs0$sigma2), 3)
fit.d.gs0$r.squared

# p. 86
##
## sec. 2.10.  Consistent covariance matrix estimation 
##

# p. 88
library(lmtest)
library(sandwich)

coeftest(naiveFit.d.gs, vcovHC, type="HC1") 
# 'type' = "HC1" uses (2.49), p. 87 
# The default is "HC3".
# In this case, the default gives the same answers.
# In other cases, it may not.
# t(gs1) = 45.9 vs. 46.7 in the book.
# Close enough?  

coeftest(naiveFit.d.gs, NeweyWest)
# t(gs1) = 38.3 vs. 40.1 in the book.
# Close enough?

# For more information on 'coeftest', 'vcovHC', and 'NeweyWest', see
# (sandw <- vignette("sandwich")) 
# Stangle(sandw$file)
#
# and
#
# (swo <- vignette("sandwich-OOP"))
# Stangle(swo$file) 


# ARIMA fit:

dim(dw.gs1n3)
#  1965    2
dw.gs1n3[1:4,]

gs1.1 <- ts.intersect(as.ts(dw.gs1n3), d.gs1.1=lag(as.ts(dw.gs1n3)))
dimnames(gs1.1)[[2]]
dimnames(gs1.1)[[2]] <- c("gs1", "gs3", "gs1.1", "gs3.1")

reg.ts <- lm(gs3~gs1+gs3.1+gs1.1, gs1.1)
summary(reg.ts)

# Close enough?  

# p. 89
##
## 2.11.  Long memory models
##

# p. 90
data(d.ibmvwewsp6203)
str(d.ibmvwewsp6203)
d.CRSP6297 <- window(d.ibmvwewsp6203, end=as.Date("1997-12-31"))
dim(d.CRSP6297)
# 8938 4
abs.VW <- abs(d.CRSP6297[, "VW"])
sum(is.na(abs.VW))
# 0
abs.VW. <- as.ts(abs.VW)
str(abs.VW.)
# 12966 obs ...
Acf(as.numeric(abs.VW), lag.max=400,
    main="ACF of absolute returns of value-weighted index")
# Matches Figure 2.22(a)

Acf(abs.VW, lag.max=400, na.action=na.pass)
# Different from Figure 2.22(a):
# This assumes we have 365.24 days/year,
# with NAs for weekends and holidays.
# Figure 2.22(a) ignores weekends and holidays,
# assuming that Monday follows Friday (except when there is a holiday).

Acf(as.numeric(abs(d.CRSP6297[, "EW"])), lag.max=400, 
    main="ACF of absolute returns of equal-weighted index")

op <- par(mfrow=c(2,1))
Acf(as.numeric(abs.VW), lag.max=400, ylim=c(-.1, .4), 
    main="ACF of absolute returns of value-weighted index")
# Matches Figure 2.22(a)

#Acf(abs.VW, lag.max=400, na.action=na.pass)
# Different from Figure 2.22(a):
# This assumes we have 365.24 days/year,
# with NAs for weekends and holidays.
# Figure 2.22(a) ignores weekends and holidays,
# assuming that Monday follows Friday (except when there is a holiday).

Acf(as.numeric(abs(d.CRSP6297[, "EW"])), lag.max=400, ylim=c(-.1, .4), 
    main="ACF of absolute returns of equal-weighted index")
par(op)

Try the FinTS package in your browser

Any scripts or data that you put into this service are public.

FinTS documentation built on May 2, 2019, 4:40 a.m.