R/rotations.R

Defines functions varimin vgQ.bifactor bifactorQ bifactorT vgQ.mccammon mccammon vgQ.infomax infomaxQ infomaxT vgQ.cf parsimax equamax cfQ cfT vgQ.bigeomin bigeominQ bigeominT vgQ.geomin geominQ geominT vgQ.tandemII tandemII vgQ.tandemI tandemI vgQ.bentler bentlerQ bentlerT vgQ.simplimax simplimax vgQ.varimax Varimax vgQ.quartimax quartimax vgQ.entropy entropy vgQ.oblimax oblimax vgQ.pst pstQ pstT vgQ.target targetQ targetT vgQ.quartimin quartimin vgQ.oblimin oblimin

Documented in bentlerQ bentlerT bifactorQ bifactorT bigeominQ bigeominT cfQ cfT entropy equamax geominQ geominT infomaxQ infomaxT mccammon oblimax oblimin parsimax pstQ pstT quartimax quartimin simplimax tandemI tandemII targetQ targetT Varimax varimin vgQ.bentler vgQ.bifactor vgQ.bigeomin vgQ.cf vgQ.entropy vgQ.geomin vgQ.infomax vgQ.mccammon vgQ.oblimax vgQ.oblimin vgQ.pst vgQ.quartimax vgQ.quartimin vgQ.simplimax vgQ.tandemI vgQ.tandemII vgQ.target vgQ.varimax

###########################################
###########################################
###
###               OBLIMIN
###
###########################################
###########################################

oblimin <- function(A, Tmat=diag(ncol(A)), gam=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, 
                method="oblimin",  methodArgs=list(gam=gam), randomStarts = randomStarts )
   }

vgQ.oblimin <- function(L, gam=0){
  X <- L^2 %*% (!diag(TRUE,ncol(L))) 
  if (0 != gam) {
     p <- nrow(L)
     X <- (diag(1,p) - matrix(gam/p,p,p)) %*% X
     }
  list(Gq=L*X,
       f=sum(L^2 * X)/4,
       Method=  if (gam == 0)  "Oblimin Quartimin" else
				if (gam == .5) "Oblimin Biquartimin" else
		         paste("Oblimin g=", gam,sep="")  )
}

# original
# vgQ.oblimin <- function(L, gam=0){
#   Method <- paste("Oblimin g=",gam,sep="")
#   if (gam == 0) Method <- "Oblimin Quartimin"
#   if (gam == .5) Method <- "Oblimin Biquartimin"
#   if (gam == 1) Method <- "Oblimin Covarimin"
#   k <- ncol(L)
#   p <- nrow(L)
#   N <- matrix(1,k,k)-diag(k)
#   f <- sum(L^2 * (diag(p)-gam*matrix(1/p,p,p)) %*% L^2 %*% N)/4
#   Gq <- L * ((diag(p)-gam*matrix(1/p,p,p)) %*% L^2 %*% N)
#   return(list(Gq=Gq,f=f,Method=Method))
# }

###########################################
###########################################
###
###              QUARTIMIN
###
###########################################
###########################################

quartimin <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSoblq(A, Tmat=Tmat, method="quartimin", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.quartimin <- function(L){
  X <-  L^2 %*% (!diag(TRUE,ncol(L))) 
  list(Gq= L*X,
       f= sum(L^2 * X)/4,  
       Method=  "Quartimin" )
  }

#original
#vgQ.quartimin <- function(L){
#  Method="Quartimin"
#  L2 <- L^2
#  k <- ncol(L)
#  M <- matrix(1,k,k)-diag(k)
#  f <- sum(L2 * (L2 %*% M))/4
#  Gq <- L * (L2 %*% M)
#  return(list(Gq=Gq,f=f,Method=Method))
#} 


###########################################
###########################################
###
###           TARGET ROTATION
###      required argument is a 
###       target matrix 'Target'
###
###########################################
###########################################


targetT <- function(A, Tmat=diag(ncol(A)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0, L=NULL) {
   if (missing(A) & !is.null(L)){
     message("Use of 'L=' is deprecated. Please use 'A='. ")
     A <- L
     Tmat <- diag(ncol(L))
   }
   if(is.null(Target)) stop("argument Target must be specified.")
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
           method="target", methodArgs=list(Target=Target), randomStarts = randomStarts)
   }

targetQ <- function(A, Tmat=diag(ncol(A)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0, L=NULL) {
   if (missing(A) & !is.null(L)){
     message("Use of 'L=' is deprecated. Please use 'A='. ")
     A <- L
     Tmat <- diag(ncol(L))
   }
   if(is.null(Target)) stop("argument Target must be specified.")
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
           method="target", methodArgs=list(Target=Target), randomStarts = randomStarts)
   }
   
vgQ.target <- function(L, Target=NULL){
   if(is.null(Target)) stop("argument Target must be specified.")
   #   e.g.  Target <- matrix(c(rep(NA,4),rep(0,8),rep(NA,4)),8) 
   #  approximates  Michael Brown approach
   Gq <-  2 * (L - Target)
   Gq[is.na(Gq)] <- 0 #missing elements in target do not affect the first derivative 
   list(Gq=Gq,
        f=sum((L-Target)^2, na.rm=TRUE),  
	Method="Target rotation")  #The target rotation ? option in Michael Browne's algorithm should be NA
   }

###########################################
###########################################
###
###   PARTIALLY SPECIFIED TARGET ROTATION
###      required arguments are a 
###      target matrix 'Target' and 
###          weight matrix 'W'
###
###########################################
###########################################

pstT <- function(A, Tmat=diag(ncol(A)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0, L=NULL) {
   if (missing(A) & !is.null(L)){
     message("Use of 'L=' is deprecated. Please use 'A='. ")
     A <- L
     Tmat <- diag(ncol(L))
   }
   if(is.null(W))      stop("argument W must be specified.")
   if(is.null(Target)) stop("argument Target must be specified.")
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, 
	    method="pst", methodArgs=list(W=W, Target=Target), randomStarts = randomStarts)
   }

pstQ <- function(A, Tmat=diag(ncol(A)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0, L=NULL) {
   if (missing(A) & !is.null(L)){
     message("Use of 'L=' is deprecated. Please use 'A='. ")
     A <- L
     Tmat <- diag(ncol(L))
   }
   if(is.null(W))      stop("argument W must be specified.")
   if(is.null(Target)) stop("argument Target must be specified.")
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, 
	  method="pst", methodArgs=list(W=W, Target=Target), randomStarts = randomStarts)
   }

vgQ.pst <- function(L, W=NULL, Target=NULL){
   if(is.null(W))      stop("argument W must be specified.")
   if(is.null(Target)) stop("argument Target must be specified.")
   # Needs weight matrix W with 1's at specified values, 0 otherwise
   # e.g. W = matrix(c(rep(1,4),rep(0,8),rep(1,4)),8). 
   # When W has only 1's this is procrustes rotation
   # Needs a Target matrix Target with hypothesized factor loadings.
   # e.g. Target = matrix(0,8,2)
   Btilde <- W * Target
   list(Gq= 2*(W*L-Btilde), 
        f = sum((W*L-Btilde)^2),
        Method="Partially specified target")
}

###########################################
###########################################
###
###               OBLIMAX
###
###########################################
###########################################

oblimax <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="oblimax", methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.oblimax <- function(L){
  list(Gq= -(4*L^3/(sum(L^4))-4*L/(sum(L^2))),
       f= -(log(sum(L^4))-2*log(sum(L^2))),
       Method="Oblimax")
}


###########################################
###########################################
###
###          MINIMUM ENTROPY
###
###########################################
###########################################

entropy <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, method="entropy", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.entropy <- function(L){
  list(Gq= -(L*log(L^2 + (L^2==0)) + L),
       f= -sum(L^2*log(L^2 + (L^2==0)))/2, 
       Method="Minimum entropy")
}

###########################################
###########################################
###
###               QUARTIMAX
###
###########################################
###########################################

quartimax <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, method="quartimax", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.quartimax <- function(L){
  list(Gq= -L^3,
       f= -sum(diag(crossprod(L^2)))/4, 
       Method="Quartimax")
}


###########################################
###########################################
###
###               VARIMAX
###
###########################################
###########################################

Varimax <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, method="varimax", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.varimax <- function(L){
  QL <- sweep(L^2,2,colMeans(L^2),"-")
  list(Gq= -L * QL,
       f= -sqrt(sum(diag(crossprod(QL))))^2/4, 
       Method="varimax")
}

###########################################
###########################################
###
###               SIMPLIMAX
###  argument: # close to zero loadings 'k'
###
###########################################
###########################################

simplimax <- function(A, Tmat=diag(ncol(A)), k=nrow(A), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
         method="simplimax", methodArgs=list(k=k), randomStarts = randomStarts)
   }  

vgQ.simplimax <- function(L, k=nrow(L)){
  # k: Number of close to zero loadings
  Imat <- sign(L^2 <= sort(L^2)[k])
  list(Gq= 2*Imat*L,
       f= sum(Imat*L^2), 
       Method="Simplimax")
}

###########################################
###########################################
###
### BENTLER'S INVARIANT PATTERN SIMPLICITY
###
###########################################
###########################################

bentlerT <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, 
	     method="bentler", methodArgs = NULL, randomStarts = randomStarts)
   }

bentlerQ <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
           method="bentler", methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.bentler <- function(L){
  L2 <- L^2
  M <- crossprod(L2)
  D <- diag(diag(M))
  list(Gq= -L * (L2 %*% (solve(M)-solve(D))),
       f= -(log(det(M))-log(det(D)))/4,
       Method="Bentler's criterion")
}

###########################################
###########################################
###
###           TANDEM CRITERIA
###
###########################################
###########################################

tandemI <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="tandemI", methodArgs = NULL, randomStarts = randomStarts)
   }

#vgQ.tandemI <- function(L){  # Tandem Criterion, Comrey, 1967.
#  Method <- "Tandem I"
#  LL <- (L %*% t(L))
#  LL2 <- LL^2
#  f <- -sum(diag(crossprod(L^2, LL2 %*% L^2)))
#  Gq1 <- 4 * L *(LL2 %*% L^2)
#  Gq2 <- 4 * (LL * (L^2 %*% t(L^2))) %*% L
#  Gq <- -Gq1 - Gq2 
#  return(list(Gq=Gq,f=f,Method=Method))
#}

vgQ.tandemI <- function(L){  # Tandem Criterion, Comrey, 1967.
  LL <- (L %*% t(L))
  LL2 <- LL^2
  Gq1 <- 4 * L *(LL2 %*% L^2)
  Gq2 <- 4 * (LL * (L^2 %*% t(L^2))) %*% L
  Gq <- -Gq1 - Gq2 
  list(Gq=Gq,
       f= -sum(diag(crossprod(L^2, LL2 %*% L^2))), 
       Method="Tandem I")
  }

tandemII <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, method="tandemII", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.tandemII <- function(L){  # Tandem Criterion, Comrey, 1967.
  LL <- (L %*% t(L))
  LL2 <- LL^2
  f <- sum(diag(crossprod(L^2, (1-LL2) %*% L^2)))
  Gq1 <- 4 * L *((1-LL2) %*% L^2)
  Gq2 <- 4 * (LL * (L^2 %*% t(L^2))) %*% L
  Gq <- Gq1 - Gq2 
  list(Gq=Gq,
       f=f, 
       Method="Tandem II")
  }

###########################################
###########################################
###
###               GEOMIN
###
###########################################
###########################################

geominT <- function(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
           method="geomin", methodArgs=list(delta=delta), randomStarts = randomStarts)
   }

geominQ <- function(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="geomin", methodArgs=list(delta=delta), randomStarts = randomStarts)
   }

vgQ.geomin <- function(L, delta=.01){
  k <- ncol(L)
  p <- nrow(L)
  L2 <- L^2 + delta
  pro <- exp(rowSums(log(L2))/k) 
  list(Gq=(2/k)*(L/L2)*matrix(rep(pro,k),p),
       f= sum(pro), 
       Method="Geomin")
  }
  
###########################################
###########################################
###
###               BI-GEOMIN
###
###########################################
###########################################

bigeominT <- function(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
           method="bigeomin", methodArgs=list(delta=delta), randomStarts = randomStarts)
   }

bigeominQ <- function(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="bigeomin", methodArgs=list(delta=delta), randomStarts = randomStarts)
   }
  
  
vgQ.bigeomin <- function(L, delta = 0.01){
   Lg <- L[ , -1, drop = FALSE]
   out <- vgQ.geomin(Lg, delta = delta) 
     list(Gq=cbind(0, out$Gq),
       f= out$f, 
       Method="Bi-Geomin")
  }

###########################################
###########################################
###
###          CRAWFORD FERGUSON FAMILY
###           needs kappa parameter
###
###             EQUAMAX   PARSIMAX
###
###########################################
###########################################

cfT <- function(A, Tmat=diag(ncol(A)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
             method="cf", methodArgs=list(kappa=kappa), randomStarts = randomStarts)
   }

cfQ <- function(A, Tmat=diag(ncol(A)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
             method="cf", methodArgs=list(kappa=kappa), randomStarts = randomStarts)
   }

equamax <- function(A, Tmat=diag(ncol(A)), kappa=ncol(A)/(2*nrow(A)), normalize=FALSE, eps=1e-5, 
	maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
             method="cf", methodArgs=list(kappa=kappa), randomStarts = randomStarts)
   }

parsimax <- function(A, Tmat=diag(ncol(A)), kappa=(ncol(A) - 1)/(ncol(A) + nrow(A) - 2), 
	normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
             method="cf", methodArgs=list(kappa=kappa), randomStarts = randomStarts)
   }

vgQ.cf <- function(L, kappa=0){
  k <- ncol(L)
  p <- nrow(L)
  # kappa <- 0 # quartimax 
  # kappa <- 1/p # varimax
  # kappa <- k/(2*p) # equamax
  # kappa <- (k-1)/(p+k-2) # parsimax
  # kappa <- 1 # factor parsimony
  N <- matrix(1,k,k)-diag(k)
  M <- matrix(1,p,p)-diag(p)
  L2 <- L^2
  f1 <- (1-kappa)*sum(diag(crossprod(L2,L2 %*% N)))/4
  f2 <- kappa*sum(diag(crossprod(L2,M %*% L2)))/4
  list(Gq= (1-kappa) * L * (L2 %*% N) + kappa * L * (M %*% L2),
       f= f1 + f2,
       Method=  if (kappa == 0)  "Crawford-Ferguson Quartimax/Quartimin" else
				if (kappa == 1/p) "Crawford-Ferguson Varimax" else
				if (kappa == k/(2*p)) "Equamax" else
				if (kappa == (k-1)/(p+k-2)) "Parsimax" else
				if (kappa == 1)  "Factor Parsimony"   else
				paste("Crawford-Ferguson:k=",kappa,sep=""))
}

###########################################
###########################################
###
###               INFOMAX
###
###########################################
###########################################

infomaxT <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, method="infomax", randomStarts = randomStarts)
   }

infomaxQ <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="infomax", methodArgs = NULL, randomStarts = randomStarts)
   }


vgQ.infomax <- function(L){
  k <- ncol(L)
  p <- nrow(L)
  S <- L^2
  s <- sum(S)
  s1 <- rowSums(S)
  s2 <- colSums(S)
  E <- S/s
  e1 <- s1/s
  e2 <- s2/s
  Q0 <- sum(-E * log(E))
  Q1 <- sum(-e1 * log(e1))
  Q2 <- sum(-e2 * log(e2))
  f <- log(k) + Q0 - Q1 - Q2
  H <- -(log(E) + 1)
  alpha <- sum(S * H)/s^2
  G0 <- H/s - alpha * matrix(1, p, k)
  h1 <- -(log(e1) + 1)
  alpha1 <- s1 %*% h1/s^2
  G1 <- matrix(rep(h1,k), p)/s - as.vector(alpha1) * matrix(1, p, k)
  h2 <- -(log(e2) + 1)
  alpha2 <- h2 %*% s2/s^2
  G2 <- matrix(rep(h2,p), ncol=k, byrow=T)/s - as.vector(alpha2) * matrix(1, p, k)
  Gq <- 2 * L * (G0 - G1 - G2)
  list(f = f,
  		Gq=Gq,
  		Method="Infomax")
}

###########################################
###########################################
###
###           MCCAMMON ENTROPY
###
###########################################
###########################################

mccammon <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, method="mccammon", normalize=normalize, eps=eps, maxit=maxit, methodArgs = NULL, randomStarts = randomStarts)
   }

vgQ.mccammon <- function(L){
  k <- ncol(L)
  p <- nrow(L)
  S <- L^2
  M <- matrix(1,p,p)
  s2 <- colSums(S)
  P <- S / matrix(rep(s2,p),ncol=k,byrow=T)
  Q1 <- -sum(P * log(P))
  H <- -(log(P) + 1)
  R <- M %*% S
  G1 <- H/R - M %*% (S*H/R^2)
  s <- sum(S)
  p2 <- s2/s
  Q2 <- -sum(p2 * log(p2))
  h <- -(log(p2) + 1)
  alpha <- h %*% p2
  G2 <- rep(1,p) %*% t(h)/s - as.vector(alpha)*matrix(1,p,k)
  Gq <- 2*L*(G1/Q1 - G2/Q2)
  f <- log(Q1) - log(Q2)
  list(f = f,
		Gq = Gq, 
		Method = "McCammon entropy")
}

###########################################
###########################################
###
###           BIFACTOR BIQUARTIMIN
###
###########################################
###########################################

bifactorT <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
  #adapted from Jennrich and Bentler 2011. 
    GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="bifactor", randomStarts = randomStarts)
    }

bifactorQ <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0){
  #oblique. Adapted from Jennrich and Bentler 2011. 
    GPFRSoblq(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
            method="bifactor", randomStarts = randomStarts)
    }

vgQ.bifactor <- function(L){
	k <- ncol(L)
	Lt <- L[,2:k]
	Lt2 <- Lt^2
	N <- matrix(1, nrow=k-1, ncol=k-1) - diag(k-1)
	f <- sum(Lt2 * (Lt2 %*% N))
	Gt <- 4 * Lt * (Lt2 %*% N)
	G <- cbind(0, Gt)
	list(f = f,
			Gq = G,
			Method = "Bifactor Biquartimin") 
}

###########################################
###########################################
###
###               VARIMIN
###
###########################################
###########################################

varimin <- function(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) {
   GPFRSorth(A, Tmat=Tmat, normalize=normalize, eps=eps, maxit=maxit,
             method="varimin", methodArgs=NULL, randomStarts = randomStarts)
   }
   
vgQ.varimin <- function (L){
    QL <- sweep(L^2, 2, colMeans(L^2), "-")
    list(Gq = L * QL, 
        f = sqrt(sum(diag(crossprod(QL))))^2/4,
        Method = "varimin")
}

###########################################
###########################################
###
###               PROMAX 
###            (not in use)
###
###########################################
###########################################

# promax is already defined in the stats (previously mva) package
# 
#GPromax <- function(A,pow=3){
# method <- "Promax"
# # Initial rotation: Standardized Varimax
# require(statsa)
# xx <- promax(A,pow)
# Lh <- xx$loadings
# Th <- xx$rotmat
# orthogonal <- F
# Table <- NULL
#return(list(loadings=Lh,Th=Th,Table=NULL,method,orthogonal=orthogonal))
#}

Try the GPArotation package in your browser

Any scripts or data that you put into this service are public.

GPArotation documentation built on May 29, 2024, 8:16 a.m.