R/function_AnnualRegime.R

Defines functions AnnualRegime

Documented in AnnualRegime

#' Calculate annual regimes
#'
#' Calculate annual regimes based on long-term time series, typically imported HYPE basin output and time output result files.
#'
#' @param x Data frame, with column-wise equally-spaced time series. Date-times in \code{\link{POSIXct}} format in first column.
#' Typically an imported basin or time output file from HYPE. See details.
#' @param stat Character string, either \code{"mean"} or \code{"sum"}. Defines the type of aggregation to be computed for output 
#' time periods, see Details. Defaults to \code{"mean"}.
#' @param ts.in Character string, timestep of \code{x}, attribute \code{timestep} in \code{x} per default. 
#' Otherwise one of \code{"month"}, \code{"week"}, \code{"day"}, or \code{"nhour"} (n = number of hours).
#' @param ts.out Character string, timestep for results, defaults to \code{ts.in}. This timestep must be equal to or longer than 
#' \code{ts.in}.
#' @param start.mon Integer between 1 and 12, starting month of the hydrological year, used to order the output.
#' @param incl.leap Logical, leap days (Feb 29) are removed from results per default, set to \code{TRUE} to keep them. Applies 
#' to daily and shorter time steps only.
#' @param na.rm Logical, indicating if \code{NA} values should be stripped before averages are calculated.
#' @param format Character string. Output format, `list` (default) or `long`. See Value.
#' 
#' @details
#' \code{AnnualRegime} uses \code{\link{aggregate}} to calculate long-term average regimes for all data columns provided in \code{x}, 
#' including long-term arithmetic means, medians, minima and maxima, and 5%, 25%, 75%, and 95% percentiles. With HYPE result files, 
#' \code{AnnualRegime} is particularly applicable to basin and time output files imported using \code{\link{ReadBasinOutput}} and 
#' \code{\link{ReadTimeOutput}}. The function does not check if equally spaced time steps are provided in \code{x} or if the 
#' overall time period in \code{x} covers full years so that the calculated averages are based on the same number of values.
#' 
#' Values within each output time period can be aggregated either by arithmetic means or by sums within each period, e.g. typically 
#' means for temperatures and sums for precipitation. Long-term aggregated values are always computed as arithmetic means. 
#' 
#' @note
#' If weekly data are provided in \code{x}, \code{AnnualRegime} will inflate \code{x} to daily time steps before computing 
#' results. Values in \code{x} will be assigned to the preceeding week days, corresponding to HYPE file output, where weekly 
#' values are conventionally printed on the last day of the week. If \code{NA} values are present in the original weekly data, 
#' these will be filled with the next available value as a side effect of the inflation.
#' 
#' If weekly output time steps are computed in combination with a user-defined start month, the function will round up weeks to 
#' determine the first week of the hydrological year. Weeks are identified using Monday as first day of the week and the first Monday 
#' of the year as day 1 of week 1 (see conversion code \code{\%W} in \code{\link{strptime}}). Boundary weeks \code{'00'} and 
#' \code{'53'} are merged to week \code{'00'} prior to average computations.
#' 
#' @return 
#' If argument `format` is `list`, `AnnualRegime` returns a list with 8 elements and two additional [attributes()]. Each list element contains a 
#' named data frame with aggregated annual regime data: arithmetic means, medians, minima, maxima, and 5%, 25%, 75%, and 95% 
#' percentiles.
#' 
#' Each data frames contains, in column-wise order: reference dates in \code{POSIXct} format, date information as string, and aggregated 
#' variables found in \code{x}.
#' 
#' Reference dates are given as dates in either 1911, 1912, or 1913 (just because a leap day and outer weeks '00'/'53' occur during 
#' these years) and can be used for plots starting at the beginning of the hydrological year (with axis annotations set to months only). 
#' Daily and hourly time steps are given as is, weekly time steps are given as mid-week dates (Wednesday), monthly time steps as 
#' mid month dates (15th). 
#' 
#' If argument `format` is `long`, `AnnualRegime` returns a four-column data frame with one value per row, and all variable information aligned 
#' with the values. Columns in the data frame: `id` with SUBIDs or HYPE variable IDs, `month/week/day` with aggregation time steps, `name` with 
#' short names of regime data (means, medians, minima, maxima, percentiles), and `value` with the variable value. 
#' 
#' Attribute \code{period} contains a two-element POSIXct vector containing start and end dates of the 
#' source data. Attribute \code{timestep} contains a timestep keyword corresponding to function argument \code{ts.out}.
#' 
#' 
#' @seealso
#' \code{\link{PlotAnnualRegime}}
#'
#' @examples
#' # Source data, HYPE basin output with a number of result variables
#' te <- ReadBasinOutput(filename = system.file("demo_model", "results", "0003587.txt", 
#' package = "HYPEtools"))
#' # Daily discharge regime, computed and observed, hydrologigical year from October 
#' AnnualRegime(te[, c("DATE", "COUT", "ROUT")], ts.in = "day", start.mon = 10)
#' # Id., aggregated to weekly means
#' AnnualRegime(te[, c("DATE", "COUT", "ROUT")], ts.in = "day", ts.out = "week", start.mon = 10)
#' # Long format, e.g. for subsequent plotting with ggplot
#' AnnualRegime(te[, c("DATE", "COUT", "ROUT")], ts.in = "day", ts.out = "week", format = "long", 
#' start.mon = 10)
#' # Precipitation regime, monthly sums
#' AnnualRegime(te[, c("DATE", "UPCPRC")], ts.in = "day", ts.out = "month", stat = "sum")
#' 
#' @importFrom tidyr pivot_longer
#' @importFrom stats quantile aggregate na.fail
#' @export

AnnualRegime <- function(x, stat = c("mean", "sum"), ts.in = NULL, ts.out = NULL, start.mon = 1, incl.leap = FALSE, na.rm = TRUE, 
                         format = c("list", "long")) {
  
  # catch user input errors
  stat <- match.arg(stat)
  format <- match.arg(format)
  
  if (start.mon > 12 || start.mon < 1) {
    stop("'start.mon' not valid.")
  }
  
  ## identify timestep of x and choose posix element for averaging
  # conditional: get timestep of x from attribute if argument ts.in is not provided, with error handling
  if (is.null(ts.in)) {
    ts.in <- attr(x, "timestep")
    if (is.null(ts.in)) {
      stop("No attribute 'timestep' found in 'x', and no argument 'ts.in' provided.")
    }
  }
  
  # check if input timestep is acceptable, abort otherwise
  if (!(length(grep("hour", ts.in)) == 1 | ts.in == "day" | ts.in == "week" | ts.in == "month")) {
    stop(paste("Timestep '", ts.in, "' not accepted.", sep = ""))
  }
  
  # assign and check output timestep
  if (is.null(ts.out)) {
    ts.out <- ts.in
  } else {
    if (ts.out != ts.in) {
      if ((ts.in == "month" & ts.out != "month") | 
          (ts.in == "week" & !(ts.out %in% c("week", "month"))) | 
          (ts.in == "day" & !(ts.out %in% c("day", "week", "month")))) {
        stop("Output timestep cannot be shorter than input timestep.")
      }
    }
  }

  # check if output timestep is acceptable, abort otherwise
  if (!(length(grep("hour", ts.out)) == 1 | ts.out == "day" | ts.out == "week" | ts.out == "month")) {
    stop(paste("Timestep '", ts.out, "' not accepted.", sep = ""))
  }
  
  # weekly data will be expanded to daily data for calculations and later re-collapsed, HYPE writes weekly values to 
  # last day of the week
  if (ts.in == "week") {
    # create daily date vector over time period
    days <- data.frame(DATE = seq(x[1, 1], x[nrow(x), 1], by = "day"))
    x <- merge(days, x, by = 1, all.x = TRUE)
    # use internal function to fill NAs with next available value, apply to all columns
    x <- data.frame(DATE = x[, 1], apply(x[, -1], 2, .FillWeek))
    tformat <- format(x[, 1], format = "%j")
  }
  
  
  ## format index vectors for calculations below
  # output period vector
  if (length(grep("hour", ts.out)) == 1) {
    tformat <- format(x[, 1], format = "%m-%d %H")
  } else if (ts.out == "day") {
    tformat <- format(x[, 1], format = "%m-%d")
  } else if (ts.out == "week") {
    tformat <- format(x[, 1], format = "%W")
    # merge boundary half-weeks, those which go across new year, to one group
    # this can be weeks "00", "52", "00", and "53"
    tformat[tformat %in% c("00", "52", "53")] <- "52"
  } else if (ts.out == "month") {
    tformat <- format(x[, 1], format = "%m")
  } else { # this should never occur, leave it just for safety...
    stop(paste("Timestep '", ts.out, "' not known.", sep = ""))
  }
  # Year vector
  yformat <- format(x[, 1], format = "%Y")
  
  # internal function for statistics used in aggregate below
  ifun <- function(x, na.rm) {
    c(mean = mean(x, na.rm = na.rm), quantile(x = x, probs = c(0, .05, .25, .5, .75, .95, 1), na.rm = na.rm))
  }
  
  
  # calculate results, conditional on type of aggregation for output periods
  if (stat == "mean") {
    
    res <- aggregate(x[, -1], list(tformat), ifun, na.rm = na.rm)
  } else {
    # stat is sum
    
    te <- aggregate(x[, -1], list(tformat, yformat), sum, na.rm = na.rm)
    res <- aggregate(te[, -c(1:2)], list(te[, 1]), ifun, na.rm = na.rm)
  }
  
  # prettify header
  names(res)[1] <- ts.out
  
  # remove leap day from daily results if requested by user (and if it exists in results)
  if (ts.out == "day" && !incl.leap && res[60, 1] == "02-29") {
    res <- res[-60, ]
  }
  
  # remove leap day from sub-daily results if requested by user (and if it exists in results)
  if (length(grep("hour", ts.out)) == 1 && !incl.leap) {
    te <- which(substr(res[, 1], 1, 5) == "02-29")
    if (length(te) > 0) {
      res <- res[-te, ]
    }
  }
  
  # order results according to a user-requested starting month to reflect the hydrological year rather than the calender year, 
  # calculate reference dates, conditional on starting month
  if (start.mon != 1) {
    
    # create date string of first day in the hydrological year
    if (length(grep("hour", ts.out)) == 1) {
      sm <- paste(formatC(start.mon, width=2, flag = "0"), "-01 00", sep = "")
    } else if (ts.out == "day") {
      sm <- paste(formatC(start.mon, width=2, flag = "0"), "-01", sep = "")
    } else if (ts.out == "week") {
      # look-up table for starting weeks
      te <- data.frame(mon = 2:12, week = c(4,9,13,18,22,26,31,35,40,44,49))
      sm <- formatC(te[which(te[, 1] == start.mon), 2], width=2, flag = "0")
    } else if (ts.out == "month") {
      sm <- formatC(start.mon, width=2, flag = "0")
    }
    
    # find row index of start date string
    ind.sm <- which(res[, 1] == sm)
    ind.nrow <- nrow(res)
    
    # re-order results
    res <- res[c(ind.sm:ind.nrow, 1:(ind.sm - 1)), ]
    
    # add a reference date column, format conditional on output time step
    if (length(grep("hour", ts.out)) == 1) {
      # construct reference datetimes, conditional on hydrological year starting month
      # so that a leap day is always included in the results
      if (start.mon == 2) {
        te <- as.POSIXct(strptime(paste(c(rep(1912, times = ind.nrow - ind.sm + 1), rep(1913, times = ind.sm - 1)), "-", res[, 1], sep = ""), format = "%F %H", tz = "UTC"))
      } else {
        te <- as.POSIXct(strptime(paste(c(rep(1911, times = ind.nrow - ind.sm + 1), rep(1912, times = ind.sm - 1)), "-", res[, 1], sep = ""), format = "%F %H", tz = "UTC"))
      }
    } else if (ts.out == "day") {
      # construct reference days
      # te <- as.POSIXct(strptime(paste(c(rep(1900, times = ind.nrow - ind.sm + 1), rep(1901, times = ind.sm - 1)), "-", res[, 1], sep = ""), format = "%F", tz = "UTC"))
      if (start.mon == 2) {
        te <- as.POSIXct(strptime(paste(c(rep(1912, times = ind.nrow - ind.sm + 1), rep(1913, times = ind.sm - 1)), "-", res[, 1], sep = ""), format = "%F", tz = "UTC"))
      } else {
        te <- as.POSIXct(strptime(paste(c(rep(1911, times = ind.nrow - ind.sm + 1), rep(1912, times = ind.sm - 1)), "-", res[, 1], sep = ""), format = "%F", tz = "UTC"))
      }
    } else if (ts.out == "week") {
      # construct reference dates for each week, Wednesdays chosen
      if (start.mon == 2) {
        te <- as.POSIXct(strptime(paste(c(rep(1912, times = ind.nrow - ind.sm + 1), rep(1913, times = ind.sm - 1)), res[, 1], "3", sep = ""), format = "%Y%W%u", tz = "UTC"))
      } else {
        te <- as.POSIXct(strptime(paste(c(rep(1911, times = ind.nrow - ind.sm + 1), rep(1912, times = ind.sm - 1)), res[, 1], "3", sep = ""), format = "%Y%W%u", tz = "UTC"))
      }
    } else if (ts.out == "month") {
      # construct reference dates for each month, 15th chosen
      if (start.mon == 2) {
        te <- as.POSIXct(strptime(paste(c(rep(1912, times = ind.nrow - ind.sm + 1), rep(1913, times = ind.sm - 1)), "-", res[, 1], "-15", sep = ""), format = "%F", tz = "UTC"))
      } else {
        te <- as.POSIXct(strptime(paste(c(rep(1911, times = ind.nrow - ind.sm + 1), rep(1912, times = ind.sm - 1)), "-", res[, 1], "-15", sep = ""), format = "%F", tz = "UTC"))
      }
    }
    
  } else {
    # no start month adjustment necessary, just add a reference date column
    if (length(grep("hour", ts.out)) == 1) {
      # construct reference datetimes
      te <- as.POSIXct(strptime(paste(rep(1912, times = nrow(res)), "-", res[, 1], sep = ""), format = "%F %H", tz = "UTC"))
    } else if (ts.out == "day") {
      # construct reference days
      te <- as.POSIXct(strptime(paste(rep(1912, times = nrow(res)), "-", res[, 1], sep = ""), format = "%F", tz = "UTC"))
    } else if (ts.out == "week") {
      # construct reference dates for each week, Wednesdays chosen, 1901 because 1900 has no week "00"
      te <- as.POSIXct(strptime(paste(rep(1913, times = nrow(res)), res[, 1], "3", sep = ""), format = "%Y%W%u", tz = "UTC"))
    } else if (ts.out == "month") {
      # construct reference dates for each month, 15th chosen
      te <- as.POSIXct(strptime(paste(rep(1912, times = nrow(res)), "-", res[, 1], "-15", sep = ""), format = "%F", tz = "UTC"))
    }
  }
  
  # add reference dates to results
  res <- data.frame(refdate = te, res)
  
  
  
  if (format == "list") {
    
    # combine to result list with data frame elements for each statistical moment
    # one-variable case treated differently because aggregate returns a simple dataframe instead of a "dataframe of dataframes"
    # as in the multi-variable case
    if (ncol(x) == 2) {
      res <- list(mean = data.frame(res[, 1:2], res[, -c(1:2)][, 1]), 
                  median = data.frame(res[, 1:2], res[, -c(1:2)][, 5]), 
                  minimum = data.frame(res[, 1:2], res[, -c(1:2)][, 2]), 
                  p05 = data.frame(res[, 1:2], res[, -c(1:2)][, 3]), 
                  p25 = data.frame(res[, 1:2], res[, -c(1:2)][, 4]), 
                  p75 = data.frame(res[, 1:2], res[, -c(1:2)][, 6]), 
                  p95 = data.frame(res[, 1:2], res[, -c(1:2)][, 7]), 
                  maximum = data.frame(res[, 1:2], res[, -c(1:2)][, 8])
      )
      res <- lapply(res, function(x, z) {names(x)[3] <- z; x}, z = names(x)[2])
    } else {
      res <- list(mean = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 1]})), 
                  median = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 5]})), 
                  minimum = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 2]})), 
                  p05 = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 3]})), 
                  p25 = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 4]})), 
                  p75 = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 6]})), 
                  p95 = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 7]})), 
                  maximum = data.frame(res[, 1:2], sapply(res[, -c(1:2)], function(x){x[, 8]}))
      )
    }
    
  } else if (format == "long") {
    
    # repeat factor for IDs
    rlen <- nrow(res) * 8
    
    # format into 'long' data frame with single value column
    res <- lapply(as.list(res)[-c(1:2)], function(x, y) {r <- data.frame(cbind(refdate = y$refdate, period = as.factor(y[, 2]), data.frame(x)) %>% pivot_longer(!c("refdate", "period"))); r$name <- factor(r$name); r}, y = res[, 1:2])
    res <- do.call(rbind, res)
    
    # create id column, with SUBIDs or variable IDs
    rid <- suppressWarnings(tryCatch(na.fail(as.numeric(gsub("^X", "", names(x)[-1]))), error = function(e) {names(x)[-1]}))
    rid <- rep(rid, each = rlen)
    res <- cbind(id = rid, res)
    
    # formatting
    names(res)[2] <- ts.out
    rownames(res) <- 1:nrow(res)
    levels(res$name) <- c("mean", "min", "max", "p25", "p5", "median", "p75", "p95")
  }
  
  # add period and timestep attributes
  attr(res, "timestep") <- ts.out
  attr(res, "period") <- as.POSIXct(c(x[1, 1], x[nrow(x), 1]), tz="UTC")
  return(res)
}

Try the HYPEtools package in your browser

Any scripts or data that you put into this service are public.

HYPEtools documentation built on Sept. 11, 2024, 8:34 p.m.