R/dgig.R

Defines functions gigBreaks ddgig rgig rgig1 qgig pgig dgig

Documented in ddgig dgig gigBreaks pgig qgig rgig rgig1

### Function to calculate the density of the
### generalized inverse Gaussian distribution
dgig <- function(x, Theta, KOmega = NULL){
  if(length(Theta) != 3) {
    stop("parameter vector must contain 3 values")
  }
  Theta <- as.numeric(Theta)
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]
  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")
  
  omega <- sqrt(chi*psi)

  if(is.null(KOmega)){ 
    KOmega <- besselK(omega, nu = lambda)     
  } 
   
  gigDensity <- ifelse(x > 0, (psi/chi)^(lambda/2)/
                      (2*KOmega)*x^(lambda - 1)*
                       exp(-(1/2)*(chi*x^(-1) + psi*x)),0)
  gigDensity
}## end of dgig()

### Cumulative distribution function of the generalized inverse Gaussian
### New version intended to give guaranteed accuracy
### Uses exponential approximation in tails
### safeIntegrate() is used over six parts in the middle of the distribution
### Calls gigBreaks to determine the breaks
###
### DJS 25/01/07
pgig <- function(q, Theta, small = 10^(-6), tiny = 10^(-10),
                    deriv = 0.3, subdivisions = 100,
                    accuracy = FALSE, ...){
  if(length(Theta) != 3) {
    stop("parameter vector must contain 3 values")
  }
  Theta <- as.numeric(Theta)
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]
  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")
  omega <- sqrt(chi*psi)
   
  ## Standardise distribution to chi = 1
  q <- q/chi
  psi <- chi*psi
  chi <- 1
  Theta <- c(lambda,chi,psi)
  KOmega <- besselK(omega, nu = lambda)

  bks <- gigBreaks(Theta, small, tiny, deriv, ...)
  xTiny <- bks$xTiny
  xSmall <- bks$xSmall
  lowBreak <- bks$lowBreak
  highBreak <- bks$highBreak
  xLarge <- bks$xLarge
  xHuge <- bks$xHuge
  modeDist <- bks$modeDist

  qSort <- sort(q)
  qTiny <- which(qSort < xTiny)
  qSmall <- which(qSort < xSmall)
  qLow <- which(qSort < lowBreak)
  qLessEqMode <- which(qSort <= modeDist)
  qGreatMode <- which(qSort > modeDist)
  qHigh <- which(qSort > highBreak)
  qLarge <- which(qSort > xLarge)
  qHuge <- which(qSort > xHuge)

  ## Break indices into 8 groups: beware of empty groups
  if (length(qLow) > 0) qLessEqMode <- qLessEqMode[qLessEqMode > max(qLow)]
  if (length(qHigh) > 0) qGreatMode <- qGreatMode[qGreatMode < min(qHigh)]
  if (length(qSmall) > 0) qLow <- qLow[qLow > max(qSmall)]
  if (length(qLarge) > 0) qHigh <- qHigh[qHigh < min(qLarge)]
  if (length(qTiny) > 0) qSmall <- qSmall[qSmall > max(qTiny)]
  if (length(qHuge) > 0) qLarge <- qLarge[qLarge < min(qHuge)]
  intFun <- rep(NA, length(q))
  if (length(qTiny) > 0) intFun[qTiny] <- 0
  if (length(qHuge) > 0) intFun[qHuge] <- 1
  intErr <- rep(NA, length(q))
  if (length(qTiny) > 0) intErr[qTiny] <- 0
  if (length(qHuge) > 0) intErr[qHuge] <- tiny


  ## Use safeIntegrate function between xTiny and xHuge in 6 sections
  dgigInt <- function(q){ 
    dgig(q, Theta)
  }

  ## Calculate integrals and errors to cut points
  resSmall <- safeIntegrate(dgigInt, xTiny, xSmall, subdivisions, ...)
  resLarge <- safeIntegrate(dgigInt, xLarge, xHuge, subdivisions, ...)
  intSmall <- resSmall$value
  intLarge <- resLarge$value
  errSmall <- resSmall$abs.error
  errLarge <- tiny + resLarge$abs.error
  resLow <- safeIntegrate(dgigInt, xSmall, lowBreak, subdivisions, ...)
  resHigh <- safeIntegrate(dgigInt, highBreak, xLarge, subdivisions, ...)
  intLow <- intSmall + resLow$value
  intHigh <- intLarge + resHigh$value
  errLow <- errSmall + resLow$abs.error
  errHigh <- errLarge + resHigh$abs.error

  for (i in qSmall){
    intRes <- safeIntegrate(dgigInt, xTiny, qSort[i], subdivisions, ...)
    intFun[i] <- intRes$value
    intErr[i] <- intRes$abs.error
  }
  for (i in qLarge){
    intRes <- safeIntegrate(dgigInt, qSort[i], xHuge, subdivisions, ...)
    intFun[i] <-  1- intRes$value 
    intErr[i] <- intRes$abs.error + tiny
  }
  for (i in qLow){
    intRes <- safeIntegrate(dgigInt, xSmall, qSort[i], subdivisions, ...)
    intFun[i] <- intRes$value + intSmall
    intErr[i] <- intRes$abs.error + errSmall
  }
  for (i in qHigh){
    intRes <- safeIntegrate(dgigInt, qSort[i], xLarge, subdivisions, ...)
    intFun[i] <-  1- intRes$value - intLarge
    intErr[i] <- intRes$abs.error + errLarge
  }
  for (i in qLessEqMode){
    intRes <- safeIntegrate(dgigInt, lowBreak, qSort[i], subdivisions, ...)
    intFun[i] <- intRes$value + intLow
    intErr[i] <- intRes$abs.error + errLow
  }
  for (i in qGreatMode){
    intRes <- safeIntegrate(dgigInt, qSort[i], highBreak, subdivisions, ...)
    intFun[i] <-  1- intRes$value - intHigh
    intErr[i] <- intRes$abs.error + errLarge
  }

  if (!accuracy){
    return(intFun[rank(q)])
  }else{
    return(list(value=intFun[rank(q)], error=intErr[rank(q)]))
  }
} ## End of pgig()

### qgig using breaks as for pgig and splines
### David Scott 08/12/06
qgig <- function(p, Theta, small = 10^(-6), tiny = 10^(-10),
                 deriv = 0.3, nInterpol = 100, subdivisions = 100, ...){ 
  if(length(Theta) != 3 ){
    stop("parameter vector must contain 3 values") 
  }
  Theta <- as.numeric(Theta)
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]
  if(any(p < 0|p > 1) ) stop("p must lie between 0 and 1")
  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")

  bks <- gigBreaks(Theta, small, tiny, deriv, ...)
  xTiny <- bks$xTiny
  xSmall <- bks$xSmall
  lowBreak <- bks$lowBreak
  highBreak <- bks$highBreak
  xLarge <- bks$xLarge
  xHuge <- bks$xHuge
  modeDist <- bks$modeDist

  yTiny <- pgig(xTiny, Theta)
  ySmall <- pgig(xSmall, Theta)
  yLowBreak <- pgig(lowBreak, Theta)
  yHighBreak <- pgig(highBreak, Theta)
  yLarge <- pgig(xLarge, Theta)
  yHuge <- pgig(xHuge, Theta)
  yModeDist <- pgig(modeDist, Theta)

  pSort <- sort(p)
  pSmall <- which(pSort < pgig(xSmall, Theta))
  pTiny <- which(pSort < pgig(xTiny, Theta))
  pLarge <- which(pSort > pgig(xLarge, Theta))
  pHuge <- which(pSort > pgig(xHuge, Theta))
  pLow <- which(pSort < pgig(lowBreak, Theta))
  pHigh <- which(pSort > pgig(highBreak, Theta))
  pLessEqMode <- which(pSort <= pgig(modeDist, Theta))
  pGreatMode <- which(pSort > pgig(modeDist, Theta))

  ## Break indices into 8 groups: beware of empty groups
  if (length(pLow) > 0) pLessEqMode <- pLessEqMode[pLessEqMode > max(pLow)]
  if (length(pHigh) > 0) pGreatMode <- pGreatMode[pGreatMode < min(pHigh)]
  if (length(pSmall) > 0) pLow <- pLow[pLow > max(pSmall)]
  if (length(pLarge) > 0) pHigh <- pHigh[pHigh < min(pLarge)]
  if (length(pTiny) > 0) pSmall <- pSmall[pSmall > max(pTiny)]
  if (length(pHuge) > 0) pLarge <- pLarge[pLarge < min(pHuge)]
  qSort <- rep(NA, length(pSort))
  if (length(pTiny) > 0) qSort[pTiny] <- -Inf
  if (length(pHuge) > 0) qSort[pHuge] <- Inf

  if (length(pSmall) > 0){
    xValues <- seq(xTiny, xSmall, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pSmall){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(xTiny) >= 0){
        qSort[i] <- xTiny
      }else{
        if (zeroFun(xSmall) <= 0){
          qSort[i] <- xSmall
        }else{
          qSort[i] <- uniroot(zeroFun, interval = c(xTiny,xSmall), ...)$root
        }
      }
    }
  }
  if (length(pLow) > 0){
    xValues <- seq(xSmall, lowBreak, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pLow){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(xSmall) >= 0){
        qSort[i] <- xSmall
      }else{
        if (zeroFun(lowBreak) <= 0){
          qSort[i] <- lowBreak
        }else{
          qSort[i] <- uniroot(zeroFun, interval = c(xSmall,lowBreak), ...)$root
        }
      }
    }
  }
  if (length(pLessEqMode) > 0){
    xValues <- seq(lowBreak, modeDist, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pLessEqMode){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(lowBreak) >= 0){
        qSort[i] <- lowBreak
      }else{
        if (zeroFun(modeDist) <= 0){
          qSort[i] <- modeDist
        }else{
          qSort[i] <-
            uniroot(zeroFun, interval = c(lowBreak,modeDist), ...)$root
        }
      }
    }
  }
  if (length(pGreatMode) > 0){
    xValues <- seq(modeDist, highBreak, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pGreatMode){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(modeDist) >= 0){
        qSort[i] <- modeDist
      }else{
        if (zeroFun(highBreak) <= 0){
          qSort[i] <- highBreak
        }else{
          qSort[i] <-
            uniroot(zeroFun, interval = c(modeDist,highBreak), ...)$root
        }
      }
    }
  }
  if (length(pHigh) > 0){
    xValues <- seq(highBreak, xLarge, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pHigh){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(highBreak) >= 0){
        qSort[i] <- highBreak
      }else{
        if (zeroFun(xLarge) <= 0){
          qSort[i] <- xLarge
        }else{
          qSort[i] <-
            uniroot(zeroFun, interval = c(highBreak,xLarge), ...)$root
        }
      }
    }
  }
  if (length(pLarge) > 0){
    xValues <- seq(xLarge, xHuge, length = nInterpol)
    pgigValues <- pgig(xValues, Theta, small, tiny, deriv,
                            subdivisions = subdivisions, accuracy = FALSE)
    pgigSpline <- splinefun(xValues, pgigValues)
    for(i in pLarge){ 
      zeroFun<-function(x){ 
        pgigSpline(x) - pSort[i] 
      }
      if (zeroFun(xLarge) >= 0){
        qSort[i] <- xLarge
      }else{
        if (zeroFun(xHuge) <= 0){
          qSort[i] <- xHuge
        }else{
          qSort[i] <-
            uniroot(zeroFun, interval = c(xLarge,xHuge), ...)$root
        }
      }
    }
  }        
  if (length(pHuge) > 0){
    for (i in pHuge){
      zeroFun<-function(x){ 
        pgig(x,Theta) - pSort[i] 
      }
      interval <- c(xHuge,xHuge + (xHuge - xLarge))
      while(zeroFun(interval[1])*zeroFun(interval[2])>0) {
        interval[1] <- interval[1] + (xHuge - xLarge)
      }
      qSort[i] <- uniroot(zeroFun,interval)$root
    }
  }

  return(qSort[rank(p)]) 
} # End of qgig()

# Modified version of rgig to generate random observations
# from a generalized inverse Gaussian distribution in the
# special case where lambda = 1.
rgig1 <- function(n, Theta){
  if(length(Theta) == 2) {
    Theta <- c(1,Theta)
  }
  lambda <- 1
  chi <- Theta[2]
  psi <- Theta[3]

  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")

  alpha <- sqrt(psi/chi)
  beta <- sqrt(psi*chi)

  m <- abs(beta)/beta
  
  g <- function(y){
    0.5*beta*y^3 - y^2*(0.5*beta*m + lambda+1) +
      y*(-0.5*beta) + 0.5*beta*m
  }

  upper <- m
  while(g(upper) <= 0) upper <- 2*upper

  yM <- uniroot(g, interval = c(0,m))$root

  yP <- uniroot(g, interval = c(m,upper))$root

  a <- (yP - m)*exp(-0.25*beta*(yP + 1/yP - m - 1/m))
  b <- (yM - m)*exp(-0.25*beta*(yM + 1/yM - m - 1/m))
  c <- -0.25*beta*(m + 1/m)

  output <- numeric(n)
  
  for(i in 1:n){
    needValue <- TRUE
    while(needValue == TRUE){
      R1 <- runif(1)
      R2 <- runif(1)
      Y <- m + a*R2/R1 + b*(1 - R2)/R1
      if(Y > 0){
        if(-log(R1) >= 0.25*beta*(Y + 1/Y) + c){
          needValue <- FALSE
        }
      }
    }
    output[i] <- Y
  }
  output/alpha
} ## End of rgig1

# Function to generate random observations from a
# generalized inverse Gaussian distribution. The
# algorithm is based on that given by Dagpunar (1989)
rgig <- function(n, Theta){
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]

  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")

  if (lambda==1){
    stop(return(rgig1(n, c(chi,psi))))
  }


  alpha <- sqrt(psi/chi)
  beta <- sqrt(psi*chi)

  m <- (lambda - 1 + sqrt((lambda - 1)^2 + beta^2))/beta
  
  g <- function(y){
    0.5*beta*y^3 - y^2*(0.5*beta*m + lambda + 1) +
      y*((lambda - 1)*m - 0.5*beta) + 0.5*beta*m
  }

  upper <- m
  while(g(upper) <= 0) upper <- 2*upper

  ##yM <- uniroot(g, interval = c(0, m))$root
  ## Correct problem when psi and chi are very small
  ## Code from Fabian Scheipl
  ## Fabian.Scheipl@stat.uni-muenchen.de
  yM <- uniroot(g, interval = c(0,m),
                tol = min(.Machine$double.eps^0.25,
                          (.Machine$double.eps +g(0)/10)))$root

  yP <- uniroot(g, interval = c(m,upper))$root

  a <- (yP - m)*(yP/m)^(0.5*(lambda - 1))*
    exp(-0.25*beta*(yP + 1/yP - m - 1/m))
  b <- (yM - m)*(yM/m)^(0.5*(lambda - 1))*
    exp(-0.25*beta*(yM + 1/yM - m - 1/m))
  c <- -0.25*beta*(m + 1/m) + 0.5*(lambda - 1)*log(m)

  output <- numeric(n)
  
  for(i in 1:n){
    needValue <- TRUE
    while(needValue == TRUE){
      R1 <- runif(1)
      R2 <- runif(1)
      Y <- m + a*R2/R1 + b*(1 - R2)/R1
      if(Y>0){
        if(-log(R1) >= -0.5*(lambda - 1)*log(Y) + 0.25*beta*(Y + 1/Y) + c){
          needValue <- FALSE
        }
      }
    }
    output[i] <- Y
  }
  output/alpha
} ## End of rgig()

### Derivative of dgig
ddgig <- function(x, Theta, KOmega = NULL, ...){
  if(length(Theta) != 3) {
    stop("parameter vector must contain 3 values")
  }
  Theta <- as.numeric(Theta)
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]
  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")
  
  omega <- sqrt(chi*psi)
  
  if(is.null(KOmega)){ 
    KOmega <- besselK(x = omega, nu = lambda)     
  } 
  ddgig <- ifelse(x > 0,
                  dgig(x, Theta, KOmega)*(chi/x^2 + 2*(lambda - 1)/x - psi)/2,
                  0)
  ddgig
} ## End of ddgig()

### Function to set up breaks for pgig and qgig
gigBreaks <- function(Theta, small = 10^(-6), tiny = 10^(-10),
                         deriv = 0.3, ...){
  if(length(Theta) != 3) {
    stop("parameter vector must contain 3 values")
  }
  Theta <- as.numeric(Theta)
  lambda <- Theta[1]
  chi <- Theta[2]
  psi <- Theta[3]
  if(chi <= 0) stop("chi must be positive")
  if(psi <= 0) stop("psi must be positive")
  
  omega <- sqrt(chi*psi)
  ## Find quantiles of standardised gig: adjust later
  psi <- chi*psi
  chi <- 1
  ThetaStand <- c(lambda,chi,psi)
  KOmega <- besselK(x = omega, nu = lambda)
  const <- (psi/chi)^(lambda/2)/(2*KOmega)
  
  xTiny <- 0
  xSmall <- gigCalcRange(ThetaStand, small, density = TRUE)[1] 
  xLarge <- gigCalcRange(ThetaStand, small, density = TRUE)[2]
  xHuge <- gigCalcRange(ThetaStand, tiny, density = TRUE)[2]

  modeDist <- gigMode(ThetaStand)
  ## Determine break points, based on size of derivative
  xDeriv <- seq(xSmall, modeDist, length.out = 101)
  derivVals <- ddgig(xDeriv, ThetaStand, KOmega)
  maxDeriv <- max(derivVals)
  minDeriv <- min(derivVals)
  breakSize <- deriv*maxDeriv
  breakFun <- function(x){ 
    ddgig(x, ThetaStand, KOmega) - breakSize
  }
  if ((maxDeriv < breakSize)||(derivVals[1] > breakSize)){
    lowBreak <- xSmall
  }else{
    whichMaxDeriv <- which.max(derivVals)
    lowBreak <- uniroot(breakFun,c(xSmall,xDeriv[whichMaxDeriv]))$root
  }

  xDeriv <- seq(modeDist, xLarge, length.out = 101)
  derivVals <- -ddgig(xDeriv,ThetaStand, KOmega)
  maxDeriv <- max(derivVals)
  minDeriv <- min(derivVals)
  breakSize <- deriv*maxDeriv
  breakFun <- function(x){ 
    - ddgig(x, ThetaStand, KOmega) - breakSize
  }
  if ((maxDeriv < breakSize)||(derivVals[101] > breakSize)){
    highBreak <- xLarge
  }else{
    whichMaxDeriv <- which.max(derivVals)
    highBreak <- uniroot(breakFun,c(xDeriv[whichMaxDeriv],xLarge))$root
  }

  breaks <- Theta[2]*c(xTiny,xSmall,lowBreak,highBreak,xLarge,xHuge,modeDist)
  breaks <- list(xTiny = breaks[1], xSmall =  breaks[2],
                 lowBreak =  breaks[3], highBreak =  breaks[4],
                 xLarge =  breaks[5], xHuge =  breaks[6],
                 modeDist =  breaks[7])
  return(breaks)
} ## End of gigBreaks()

Try the HyperbolicDist package in your browser

Any scripts or data that you put into this service are public.

HyperbolicDist documentation built on Nov. 26, 2023, 9:07 a.m.