Nothing
DIA_MS1_fragmentationPeakDetection <- function(DIA_hrms_address, DIA_hrms_file, peaklist, selectedIPApeaks, massError,
smoothingWindowMS1, scanTolerance, nSpline, topRatioPeakHeight,
intensityThresholdFragment, pearsonRHOthreshold, outputDIAeic = NULL,
number_processing_threads = 1) {
##
DIA_peaklist <- data.frame(matrix(rep(0, 10), ncol = 10))
##############################################################################
if (is.null(outputDIAeic)) {
plotEICcheck <- FALSE
} else {
##
oldpar <- par(no.readonly = TRUE)
on.exit(suppressWarnings(par(oldpar)))
##
plotEICcheck <- TRUE
##
FSA_dir.create(outputDIAeic, allowedUnlink = FALSE)
}
############################ MS level = 1 ####################################
p2l <- IDSL.MXP::peak2list(DIA_hrms_address, DIA_hrms_file)
scanTable <- p2l[["scanTable"]] # this gets table of details for each spectra
spectraList <- p2l[["spectraList"]] # this gets the spectra values
p2l <- NULL
#
x_MS <- which(scanTable$peaksCount > 0 & scanTable$msLevel == 1) # peaks from soft ionization channel ## some files may not have data in the re-calibration period.
spectraList <- spectraList[x_MS]
scanTable <- scanTable[x_MS, ]
aggregatedSpectraList <- IPA_spectraListAggregator(spectraList)
#
RetentionTime <- scanTable$retentionTime
##
precursorCE <- as.matrix(scanTable$collisionEnergy) # Collision energy
MS1polarity <- as.matrix(scanTable$polarity)
##
n_RT <- length(RetentionTime) # n_RT is the maximum number of scan number
##############################################################################
scanNumberStartPL <- peaklist[, 1]
scanNumberEndPL <- peaklist[, 2]
mz12CIPA <- peaklist[, 8]
RTIPA <- peaklist[, 3]
IntIPA <- peaklist[, 4]
##############################################################################
call_DIA_peaklist <- function(i) {
DIA_list <- NULL
##
scanNumberApex <- which.min(abs(RetentionTime - RTIPA[i]))
scanNumberStart <- scanNumberStartPL[i] - (scanTolerance + 1)
if (scanNumberStart < 1) {
scanNumberStart <- 1
}
scanNumberEnd <- scanNumberEndPL[i] + (scanTolerance + 1)
if (scanNumberEnd > n_RT) {
scanNumberEnd <- n_RT
}
chromatogramMatrixPrecursor <- XIC(aggregatedSpectraList, scanNumberStart, scanNumberEnd, mz12CIPA[i], massError)
if (!is.null(chromatogramMatrixPrecursor)) {
chromatogramMatrixPrecursor <- cbind(chromatogramMatrixPrecursor[, 1], chromatogramMatrixPrecursor[, 3], chromatogramMatrixPrecursor[, 3])
SZC <- nrow(chromatogramMatrixPrecursor)
##
chromatogramMatrixPrecursor <- data.frame(chromatogramMatrixPrecursor)
colnames(chromatogramMatrixPrecursor) <- c("scanNumber", "smoothChromatogram", "rawChromatogram")
loess_SZC <- loess(smoothChromatogram ~ scanNumber, data = chromatogramMatrixPrecursor, span = smoothingWindowMS1/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixPrecursor[, 2] <- predict(loess_SZC)
x_neg <- which(chromatogramMatrixPrecursor[, 2] < 0)
chromatogramMatrixPrecursor[x_neg, 2] <- 0
##
if (chromatogramMatrixPrecursor[1, 1] == 1) {
chromatogramMatrixPrecursor[1, 2] <- 0
}
if (chromatogramMatrixPrecursor[SZC, 1] == n_RT) {
chromatogramMatrixPrecursor[SZC, 2] <- 0
}
##
Segment <- chromatographicPeakDetector(chromatogramMatrixPrecursor[, 2])
if (!is.null(Segment)) {
Segment1 <- Segment + chromatogramMatrixPrecursor[1, 1] - 1
x_seg_apex <- which(Segment1[, 1] <= scanNumberApex & Segment1[, 2] >= scanNumberApex)
L_x_seg_apex <- length(x_seg_apex)
if (L_x_seg_apex > 0) {
if (L_x_seg_apex > 1) {
s_x <- do.call(rbind, lapply(x_seg_apex, function(s) {
x_sh <- which.max(chromatogramMatrixPrecursor[Segment[s, 1]:Segment[s, 2], 3])
x_sh[1] + Segment[s, 1] - 1
}))
x_max <- which.max(chromatogramMatrixPrecursor[s_x, 3])
x_seg_apex <- x_seg_apex[x_max[1]]
}
##
chromatogramMatrixPrecursor <- chromatogramMatrixPrecursor[Segment[x_seg_apex, 1]:Segment[x_seg_apex, 2], ]
##
RT_chrom_precursor <- RetentionTime[chromatogramMatrixPrecursor[, 1]]
Int_chrom_precursor <- chromatogramMatrixPrecursor[, 2]
##
W_precursor <- spline(RT_chrom_precursor, Int_chrom_precursor , n = nSpline, method = "fmm",
xmin = RT_chrom_precursor[1], xmax = RT_chrom_precursor[length(RT_chrom_precursor)], ties = mean) # To smooth the curve for derivative calculations
RT_spline_precursor <- W_precursor[[1]]
Int_spline_precursor <- W_precursor[[2]]
#
x_topRatioPeakHeight <- which(Int_spline_precursor/max(Int_spline_precursor) >= (1 - topRatioPeakHeight))
RT_spline_precursor <- RT_spline_precursor[x_topRatioPeakHeight]
Int_spline_precursor <- Int_spline_precursor[x_topRatioPeakHeight]
######################################################################
peaks_MS1 <- spectraList[[scanNumberApex]]
# To remove peaks below intensity threshold
x_mz_fragment <- which((peaks_MS1[, 2] >= intensityThresholdFragment) & (peaks_MS1[, 1] <= (mz12CIPA[i] + 10))) # 10 was added to include the isotope envelope of the precursor mass
L_mz_fragment <- length(x_mz_fragment)
if (L_mz_fragment > 1) {
mz_fragment <- peaks_MS1[x_mz_fragment, 1]
##
DIA_EICs <- lapply(1:L_mz_fragment, function(k) {
##
chromatogramMatrixFragment <- XIC(aggregatedSpectraList, scanNumberStart, scanNumberEnd, mz_fragment[k], massError)
if (!is.null(chromatogramMatrixFragment)) {
chromatogramMatrixFragment <- cbind(chromatogramMatrixFragment[, 1], chromatogramMatrixFragment[, 3], chromatogramMatrixFragment[, 3])
##
Top_ScN <- (scanNumberStart - smoothingWindowMS1 - 1):(scanNumberStart - 1)
x_Top <- which(Top_ScN > 0)
L_Top <- length(x_Top)
if (L_Top > 0) {
Top_chrom_builder <- cbind(Top_ScN[x_Top], rep(0, L_Top), rep(0, L_Top))
} else {
Top_chrom_builder <- NULL
}
Bottom_ScN <- (scanNumberEnd + 1):(scanNumberEnd + smoothingWindowMS1 + 1)
x_Bottom <- which(Bottom_ScN <= n_RT)
L_Bottom <- length(x_Bottom)
if (L_Bottom > 0) {
Bottom_chrom_builder <- cbind(Bottom_ScN[x_Bottom], rep(0, L_Bottom), rep(0, L_Bottom))
} else {
Bottom_chrom_builder <- NULL
}
chromatogramMatrixFragment <- rbind(Top_chrom_builder, chromatogramMatrixFragment, Bottom_chrom_builder)
SZC <- nrow(chromatogramMatrixFragment)
## Smoothing the chromatogram trace over a smoothing window
chromatogramMatrixFragment <- data.frame(chromatogramMatrixFragment)
colnames(chromatogramMatrixFragment) <- c("scan_number", "smooth_chrom", "raw_chrom")
loess_SZC <- loess(smooth_chrom ~ scan_number, data = chromatogramMatrixFragment, span = smoothingWindowMS1/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixFragment[, 2] <- predict(loess_SZC)
x_neg <- which(chromatogramMatrixFragment[, 2] < 0)
chromatogramMatrixFragment[x_neg, 2] <- 0
##
if (chromatogramMatrixFragment[1, 1] == 1) {
chromatogramMatrixFragment[1, 2] <- 0
}
if (chromatogramMatrixFragment[SZC, 1] == n_RT) {
chromatogramMatrixFragment[SZC, 2] <- 0
}
## Peak detection module
Segment <- chromatographicPeakDetector(chromatogramMatrixFragment[, 2])
if (!is.null(Segment)) {
Segment2 <- Segment + chromatogramMatrixFragment[1, 1] - 1
x_seg_apex <- which(Segment2[, 1] <= scanNumberApex & Segment2[, 2] >= scanNumberApex)
L_x_seg_apex <- length(x_seg_apex)
if (L_x_seg_apex > 0) {
if (L_x_seg_apex > 1) {
s_x <- do.call(c, lapply(x_seg_apex, function(s) {
x_sh <- which.max(chromatogramMatrixFragment[Segment[s, 1]:Segment[s, 2], 3])
x_sh[1] + Segment[s, 1] - 1
}))
x_max <- which.max(chromatogramMatrixFragment[s_x, 3])
x_seg_apex <- x_seg_apex[x_max[1]]
}
##
chromatogramMatrixFragment <- chromatogramMatrixFragment[Segment[x_seg_apex, 1]:Segment[x_seg_apex, 2], ]
##
height_fragment <- max(chromatogramMatrixFragment[, 3]) # raw intensity
if (height_fragment > 0) {
##
RT_chrom_fragment <- RetentionTime[chromatogramMatrixFragment[, 1]]
Int_chrom_fragment <- chromatogramMatrixFragment[, 2] # smooth chromatogram
#
Int_spline_fragment <- approx(RT_chrom_fragment, Int_chrom_fragment, RT_spline_precursor, method = "linear", 0, 0, rule = 2, f = 0, ties = mean)[[2]]
#
pearsonRHO <- suppressWarnings(cor(Int_spline_precursor, Int_spline_fragment, method = "pearson"))
##
if (!is.na(pearsonRHO)) {
if (pearsonRHO >= pearsonRHOthreshold) {
if (plotEICcheck) {
L_chrom_fragment <- length(Int_chrom_fragment)
DIAEICdata <- cbind(rep(k, L_chrom_fragment), RT_chrom_fragment, Int_chrom_fragment)
} else {
DIAEICdata <- NULL
}
##
xTopRatioPeakHeight <- which(chromatogramMatrixFragment[, 3]/height_fragment >= (1 - topRatioPeakHeight))
height_fragment <- sum(chromatogramMatrixFragment[xTopRatioPeakHeight, 3]) # to use an integrated intensity of the raw chromatogram
##
DIA_fragments <- c(mz_fragment[k], height_fragment, pearsonRHO)
list(DIAEICdata, DIA_fragments)
}
}
}
}
}
}
})
####################################################################
x_fragment_dia <- do.call(c, lapply(1:L_mz_fragment, function(j) {
if (!is.null(DIA_EICs[[j]])) {
j
}
}))
##
if (length(x_fragment_dia) > 1) {
##
DIA_fragments <- do.call(rbind, lapply(x_fragment_dia, function(j) {
DIA_EICs[[j]][[2]]
}))
##
IPA12Cmz <- c(mz12CIPA[i], IntIPA[i], 1)
DIAfragmentationList <- rbind(IPA12Cmz, DIA_fragments)
DIAfragmentationList <- DIAfragmentationList[order(DIAfragmentationList[, 2], decreasing = TRUE), ]
##
spectralEntropy <- round(spectral_entropy_calculator(DIAfragmentationList[, 1:2], allowedWeightedSpectralEntropy = TRUE, noiseRemovalRatio = 1e-16)[[1]], 5)
##
L_fragments <- nrow(DIAfragmentationList)
DIA_list <- cbind(rep(i, L_fragments), rep(mz12CIPA[i], L_fragments), rep(RTIPA[i], L_fragments), rep(IntIPA[i], L_fragments), DIAfragmentationList[, 1:2],
rep(spectralEntropy, L_fragments), rep(MS1polarity[scanNumberApex], L_fragments), rep(precursorCE[scanNumberApex], L_fragments), DIAfragmentationList[, 3])
##################################################################
if (plotEICcheck) {
DIAEICdata <- do.call(rbind, lapply(x_fragment_dia, function(j) {
DIA_EICs[[j]][[1]]
}))
##
yMaxLimPlot <- max(c(Int_chrom_precursor, DIAEICdata[, 3]))
##
xLinesDiff <- c(0, which(abs(diff(DIAEICdata[, 1])) > 0), nrow(DIAEICdata))
nLines <- length(xLinesDiff)
nLines1 <- nLines - 1
##
legText <- rep("", nLines)
legText[1] <- paste0("* m/z = ", round(mz12CIPA[i], 5))
colors <- c("black", rainbow(nLines1, alpha = 1))
legCol <- rep("", nLines)
legCol[1] <- colors[1]
##
orderMSP <- order(DIA_fragments[, 2], decreasing = TRUE)
orderLines <- do.call(rbind, lapply(2:nLines, function(p) {
c((xLinesDiff[p - 1] + 1), xLinesDiff[p])
}))
orderLines <- matrix(orderLines[orderMSP, ], ncol = 2)
##
alignedEICfilename <- paste0(outputDIAeic, "/", i, "_MS1_", mz12CIPA[i], "_RT_", RTIPA[i], ".png")
png(alignedEICfilename, width = 16, height = 8, units = "in", res = 100)
##
par(mar = c(5.1, 4.1, 4.1, 13.8))
plot(RT_chrom_precursor, Int_chrom_precursor, type = "l", ylim = c(0, yMaxLimPlot*1.01), lwd = 4, col = colors[1], cex = 4, yaxt = "n", xlab = "", ylab = "")
##
pCounter <- 1
for (p in 1:nLines1) {
pCounter <- pCounter + 1
##
xLines <- seq(orderLines[p, 1], orderLines[p, 2], 1)
##
lines(DIAEICdata[xLines, 2], DIAEICdata[xLines, 3], lwd = 2, col = colors[pCounter], cex = 4)
##
legText[pCounter] <- paste0("m/z = ", round(mz_fragment[DIAEICdata[xLines[1], 1]], 5))
legCol[pCounter] <- colors[pCounter]
}
##
mtext(text = paste0("S = ", spectralEntropy), side = 3, adj = 1, line = 0.25, cex = 1.0)
mtext("Retention time (min)", side = 1, adj = 0.5, line = 2, cex = 1.35)
mtext("Intensity", side = 2, adj = 0.50, line = 1, cex = 1.35)
mtext(DIA_hrms_file, side = 3, adj = 0, line = 0.25, cex = 1.0)
legend(x = "topright", inset = c(-0.22, 0), legend = legText, lwd = c(4, rep(2, nLines1)), cex = 1.125, bty = "n",
col = legCol, seg.len = 1, x.intersp = 0.5, y.intersp = 0.9, xpd = TRUE)
##
dev.off()
################################################################
}
}
}
}
}
}
return(DIA_list)
}
##############################################################################
if (number_processing_threads == 1) {
DIA_peaklist <- do.call(rbind, lapply(selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}))
} else {
##
osType <- Sys.info()[['sysname']]
##
if (osType == "Windows") {
##
clust <- makeCluster(number_processing_threads)
clusterExport(clust, setdiff(ls(), c("clust", "selectedIPApeaks")), envir = environment())
##
DIA_peaklist <- do.call(rbind, parLapply(clust, selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}))
##
stopCluster(clust)
##
} else {
##
DIA_peaklist <- do.call(rbind, mclapply(selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}, mc.cores = number_processing_threads))
##
closeAllConnections()
##
}
}
##############################################################################
if (!is.null(DIA_peaklist)) {
DIA_peaklist <- data.frame(DIA_peaklist)
DIA_peaklist[, 1] <- as.numeric(DIA_peaklist[, 1])
DIA_peaklist[, 5] <- round(as.numeric(DIA_peaklist[, 5]), 5)
DIA_peaklist[, 6] <- round(as.numeric(DIA_peaklist[, 6]), 0)
DIA_peaklist[, 10] <- round(as.numeric(DIA_peaklist[, 10]), 2)
}
##
rownames(DIA_peaklist) <- NULL
colnames(DIA_peaklist) <- c("IDSL.IPA_PeakID", "PrecursorMZ", "Precursor_RT", "Precursor_Intensity", "CSA_mz_fragment", "CSA_int_fragment", "Weighted_spectral_entropy_0noiseRemoval", "Ion_mode", "Collision_energy", "Pearson_rho")
##
return(DIA_peaklist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.