Nothing
DIA_MS2_fragmentationPeakDetection <- function(DIA_hrms_address, DIA_hrms_file, peaklist, selectedIPApeaks, massError,
smoothingWindowMS1, smoothingWindowMS2, scanTolerance, nSpline, topRatioPeakHeight,
intensityThresholdFragment, pearsonRHOthreshold, outputDIAeic = NULL, number_processing_threads = 1) {
##
DIA_peaklist <- data.frame(matrix(rep(0, 10), ncol = 10))
##############################################################################
if (is.null(outputDIAeic)) {
plotEICcheck <- FALSE
} else {
##
oldpar <- par(no.readonly = TRUE)
on.exit(suppressWarnings(par(oldpar)))
##
plotEICcheck <- TRUE
##
FSA_dir.create(outputDIAeic, allowedUnlink = FALSE)
}
##############################################################################
p2l <- IDSL.MXP::peak2list(DIA_hrms_address, DIA_hrms_file)
scanTable <- p2l[["scanTable"]] # this gets table of details for each spectra
spectraList <- p2l[["spectraList"]] # this gets the spectra values
p2l <- NULL
##
x_MS <- which(scanTable$peaksCount > 0) # peaks from soft ionization channel ## some files may not have data in the column re-calibration period.
spectraList <- spectraList[x_MS]
scanTable <- scanTable[x_MS, ]
##
RetentionTime <- scanTable$retentionTime
##
x_MS1 <- which(scanTable$msLevel == 1)
x_MS2 <- which(scanTable$msLevel == 2)
n_RT_MS2 <- length(x_MS2) # n_RT_MS2 is the maximum number of scan number
if (n_RT_MS2 > 0) {
precursorCE <- as.matrix(scanTable$collisionEnergy) # Collision energy
############################ MS level = 1 ##################################
spectraList_MS1 <- spectraList[x_MS1]
aggregatedSpectraListMS1 <- IPA_spectraListAggregator(spectraList_MS1)
spectraList_MS1 <- NULL
RetentionTime_MS1 <- RetentionTime[x_MS1]
n_RT_MS1 <- length(x_MS1) # n_RT_MS1 is the maximum number of scan number
############################ MS level = 2 ##################################
spectraList_MS2 <- spectraList[x_MS2]
aggregatedSpectraListMS2 <- IPA_spectraListAggregator(spectraList_MS2)
spectraList <- NULL
RetentionTime_MS2 <- RetentionTime[x_MS2]
precursorCE_MS2 <- precursorCE[x_MS2]
MS2polarity <- as.numeric(scanTable$polarity[x_MS2])
##
isolationWindowTargetMZ <- as.numeric(scanTable$isolationWindowTargetMZ)
isolationWindowLowerOffset <- as.numeric(scanTable$isolationWindowLowerOffset)
isolationWindowUpperOffset <- as.numeric(scanTable$isolationWindowUpperOffset)
if (length(!is.na(isolationWindowTargetMZ)) == 0 | length(!is.na(isolationWindowLowerOffset)) == 0 | length(!is.na(isolationWindowUpperOffset)) == 0) {
isolationWindowOffsetCheck <- FALSE
} else {
isolationWindowOffsetCheck <- TRUE
##
isolationWindowLowerLimit <- isolationWindowTargetMZ - isolationWindowLowerOffset
isolationWindowUpperLimit <- isolationWindowTargetMZ + isolationWindowUpperOffset
}
##
scanTable <- NULL
############################################################################
scanNumberStartPL <- peaklist[, 1]
scanNumberEndPL <- peaklist[, 2]
mz12CIPA <- peaklist[, 8]
RTIPA <- peaklist[, 3]
IntIPA <- peaklist[, 4]
############################################################################
call_DIA_peaklist <- function(i) {
DIA_list <- NULL
##
if (isolationWindowOffsetCheck) {
x_pl_MS2 <- x_MS2[x_MS2 %in% ((x_MS1[scanNumberStartPL[i]] + 1):(x_MS1[scanNumberEndPL[i]] - 1))]
##
x_precursor_MS2 <- which(mz12CIPA[i] >= isolationWindowLowerLimit[x_pl_MS2] & mz12CIPA[i] <= isolationWindowUpperLimit[x_pl_MS2])
if (length(x_precursor_MS2) > 2) {
DIA2check <- TRUE
} else {
DIA2check <- FALSE
}
} else {
DIA2check <- TRUE
}
##########################################################################
if (DIA2check) {
##
scanNumberApex1 <- which.min(abs(RetentionTime_MS1 - RTIPA[i]))
scanNumberStart1 <- scanNumberStartPL[i] - (scanTolerance + 1)
if (scanNumberStart1 < 1) {
scanNumberStart1 <- 1
}
scanNumberEnd1 <- scanNumberEndPL[i] + (scanTolerance + 1)
if (scanNumberEnd1 > n_RT_MS1) {
scanNumberEnd1 <- n_RT_MS1
}
chromatogramMatrixMS1 <- XIC(aggregatedSpectraListMS1, scanNumberStart1, scanNumberEnd1, mz12CIPA[i], massError)
if (!is.null(chromatogramMatrixMS1)) {
chromatogramMatrixMS1 <- cbind(chromatogramMatrixMS1[, 1], chromatogramMatrixMS1[, 3], chromatogramMatrixMS1[, 3])
SZC <- nrow(chromatogramMatrixMS1)
##
chromatogramMatrixMS1 <- data.frame(chromatogramMatrixMS1)
colnames(chromatogramMatrixMS1) <- c("scanNumber", "smoothChromatogram", "rawChromatogram")
loess_SZC <- loess(smoothChromatogram ~ scanNumber, data = chromatogramMatrixMS1, span = smoothingWindowMS1/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixMS1[, 2] <- predict(loess_SZC)
x_neg <- which(chromatogramMatrixMS1[, 2] < 0)
chromatogramMatrixMS1[x_neg, 2] <- 0
##
if (chromatogramMatrixMS1[1, 1] == 1) {
chromatogramMatrixMS1[1, 2] <- 0
}
if (chromatogramMatrixMS1[SZC, 1] == n_RT_MS1) {
chromatogramMatrixMS1[SZC, 2] <- 0
}
##
Segment <- chromatographicPeakDetector(chromatogramMatrixMS1[, 2])
if (!is.null(Segment)) {
Segment1 <- Segment + chromatogramMatrixMS1[1, 1] - 1
x_seg_apex <- which(Segment1[, 1] <= scanNumberApex1 & Segment1[, 2] >= scanNumberApex1)
L_x_seg_apex <- length(x_seg_apex)
if (L_x_seg_apex > 0) {
if (L_x_seg_apex > 1) {
s_x <- do.call(c, lapply(x_seg_apex, function(s) {
x_sh <- which.max(chromatogramMatrixMS1[Segment[s, 1]:Segment[s, 2], 3])
x_sh[1] + Segment[s, 1] - 1
}))
x_max <- which.max(chromatogramMatrixMS1[s_x, 3])
x_seg_apex <- x_seg_apex[x_max[1]]
}
##
chromatogramMatrixMS1 <- chromatogramMatrixMS1[Segment[x_seg_apex, 1]:Segment[x_seg_apex, 2], ]
##
RT_chrom_MS1 <- RetentionTime_MS1[chromatogramMatrixMS1[, 1]]
Int_chrom_MS1 <- chromatogramMatrixMS1[, 2]
##
W_MS1 <- spline(RT_chrom_MS1, Int_chrom_MS1 , n = nSpline, method = "fmm",
xmin = RT_chrom_MS1[1], xmax = RT_chrom_MS1[length(RT_chrom_MS1)], ties = mean) # To smooth the curve for derivative calculations
RT_spline_MS1 <- W_MS1[[1]]
Int_spline_MS1 <- W_MS1[[2]]
#
x_topRatioPeakHeight <- which(Int_spline_MS1/max(Int_spline_MS1) >= (1 - topRatioPeakHeight))
RT_spline_MS1 <- RT_spline_MS1[x_topRatioPeakHeight]
Int_spline_MS1 <- Int_spline_MS1[x_topRatioPeakHeight]
######################### MS level = 2 ###########################
if (isolationWindowOffsetCheck) {
## update the `x_precursor_MS2` parameter
x_precursor_MS2 <- x_pl_MS2[x_precursor_MS2]
x_precursor_MS2 <- which(x_MS2 %in% x_precursor_MS2)
##
scanNumberApex2 <- which.min(abs(RetentionTime_MS2[x_precursor_MS2] - RTIPA[i]))
scanNumberApex2 <- x_precursor_MS2[scanNumberApex2]
} else {
scanNumberApex2 <- which.min(abs(RetentionTime_MS2 - RTIPA[i]))
}
x_scanNumberStart2 <- which.min(abs(x_MS1[scanNumberStartPL[i]] - x_MS2))[1]
scanNumberStart2 <- x_scanNumberStart2 - (scanTolerance + 1)
if (scanNumberStart2 < 1) {
scanNumberStart2 <- 1
}
##
x_scanNumberEnd2 <- which.min(abs(x_MS1[scanNumberEndPL[i]] - x_MS2))[1]
scanNumberEnd2 <- x_scanNumberEnd2 + (scanTolerance + 1)
if (scanNumberEnd2 > n_RT_MS2) {
scanNumberEnd2 <- n_RT_MS2
}
##################################################################
peaks_MS2 <- spectraList_MS2[[scanNumberApex2]]
##
x_mz_MS2 <- which((peaks_MS2[, 2] >= intensityThresholdFragment) & (peaks_MS2[, 1] <= (mz12CIPA[i] + 5))) # 5 was added to include the isotope envelope of the precursor mass
L_mz_MS2 <- length(x_mz_MS2)
if (L_mz_MS2 > 1) {
mz_MS2 <- peaks_MS2[x_mz_MS2, 1]
##
DIA_EICs <- lapply(1:L_mz_MS2, function(k) {
##
chromatogramMatrixMS2 <- XIC(aggregatedSpectraListMS2, scanNumberStart2, scanNumberEnd2, mz_MS2[k], massError)
##
if (!is.null(chromatogramMatrixMS2)) {
if (isolationWindowOffsetCheck) {
chromatogramMatrixMS2[which(!(chromatogramMatrixMS2[, 1] %in% x_precursor_MS2)), c(2, 3)] <- 0
if (length(which(chromatogramMatrixMS2[, 3] == 0)) < 3) {
chromatogramMatrixMS2 <- NULL
}
}
##
if (!is.null(chromatogramMatrixMS2)) {
chromatogramMatrixMS2 <- cbind(chromatogramMatrixMS2[, 1], chromatogramMatrixMS2[, 3], chromatogramMatrixMS2[, 3])
##
Top_ScN <- (scanNumberStart2 - smoothingWindowMS2 - 1):(scanNumberStart2 - 1)
x_Top <- which(Top_ScN > 0)
L_Top <- length(x_Top)
if (L_Top > 0) {
Top_chrom_builder <- cbind(Top_ScN[x_Top], rep(0, L_Top), rep(0, L_Top))
} else {
Top_chrom_builder <- NULL
}
Bottom_ScN <- (scanNumberEnd2 + 1):(scanNumberEnd2 + smoothingWindowMS2 + 1)
x_Bottom <- which(Bottom_ScN <= n_RT_MS2)
L_Bottom <- length(x_Bottom)
if (L_Bottom > 0) {
Bottom_chrom_builder <- cbind(Bottom_ScN[x_Bottom], rep(0, L_Bottom), rep(0, L_Bottom))
} else {
Bottom_chrom_builder <- NULL
}
chromatogramMatrixMS2 <- rbind(Top_chrom_builder, chromatogramMatrixMS2, Bottom_chrom_builder)
SZC <- nrow(chromatogramMatrixMS2)
## Smoothing the chromatogram trace over a smoothing window
chromatogramMatrixMS2 <- data.frame(chromatogramMatrixMS2)
colnames(chromatogramMatrixMS2) <- c("scan_number", "smooth_chrom", "raw_chrom")
loess_SZC <- loess(smooth_chrom ~ scan_number, data = chromatogramMatrixMS2, span = smoothingWindowMS2/SZC, control = loess.control(surface = "direct"))
chromatogramMatrixMS2[, 2] <- predict(loess_SZC)
x_neg <- which(chromatogramMatrixMS2[, 2] < 0)
chromatogramMatrixMS2[x_neg, 2] <- 0
##
if (chromatogramMatrixMS2[1, 1] == 1) {
chromatogramMatrixMS2[1, 2] <- 0
}
if (chromatogramMatrixMS2[SZC, 1] == n_RT_MS2) {
chromatogramMatrixMS2[SZC, 2] <- 0
}
## Peak detection module
Segment <- chromatographicPeakDetector(chromatogramMatrixMS2[, 2])
if (!is.null(Segment)) {
Segment2 <- Segment + chromatogramMatrixMS2[1, 1] - 1
x_seg_apex <- which(Segment2[, 1] <= scanNumberApex2 & Segment2[, 2] >= scanNumberApex2)
L_x_seg_apex <- length(x_seg_apex)
if (L_x_seg_apex > 0) {
if (L_x_seg_apex > 1) {
s_x <- do.call(c, lapply(x_seg_apex, function(s) {
x_sh <- which.max(chromatogramMatrixMS2[Segment[s, 1]:Segment[s, 2], 3])
x_sh[1] + Segment[s, 1] - 1
}))
x_max <- which.max(chromatogramMatrixMS2[s_x, 3])
x_seg_apex <- x_seg_apex[x_max[1]]
}
##
chromatogramMatrixMS2 <- chromatogramMatrixMS2[Segment[x_seg_apex, 1]:Segment[x_seg_apex, 2], ]
##
MS2_height <- max(chromatogramMatrixMS2[, 3]) # raw intensity
##
if (MS2_height > 0) {
##
RT_chrom_MS2 <- RetentionTime_MS2[chromatogramMatrixMS2[, 1]]
Int_chrom_MS2 <- chromatogramMatrixMS2[, 2] # smooth chromatogram
#
Int_spline_MS2 <- approx(RT_chrom_MS2, Int_chrom_MS2, RT_spline_MS1, method = "linear", 0, 0, rule = 2, f = 0, ties = mean)[[2]]
#
pearsonRHO <- suppressWarnings(cor(Int_spline_MS1, Int_spline_MS2, method = "pearson"))
##
if (!is.na(pearsonRHO)) {
if (pearsonRHO >= pearsonRHOthreshold) {
if (plotEICcheck) {
L_chrom_MS2 <- length(Int_chrom_MS2)
DIAEICdata <- cbind(rep(k, L_chrom_MS2), RT_chrom_MS2, Int_chrom_MS2)
} else {
DIAEICdata <- NULL
}
##
xTopRatioPeakHeight <- which(chromatogramMatrixMS2[, 3]/MS2_height >= (1 - topRatioPeakHeight))
MS2_height <- sum(chromatogramMatrixMS2[xTopRatioPeakHeight, 3]) # to use an integrated intensity of the raw chromatogram
##
DIA_fragments <- c(mz_MS2[k], MS2_height, pearsonRHO)
list(DIAEICdata, DIA_fragments)
}
}
}
}
}
}
}
})
################################################################
x_fragment_dia <- do.call(c, lapply(1:L_mz_MS2, function(j) {
if (!is.null(DIA_EICs[[j]])) {
j
}
}))
##
if (length(x_fragment_dia) > 1) {
##
DIAfragmentationList <- do.call(rbind, lapply(x_fragment_dia, function(j) {
DIA_EICs[[j]][[2]]
}))
orderMSP <- order(DIAfragmentationList[, 2], decreasing = TRUE)
DIAfragmentationList <- matrix(DIAfragmentationList[orderMSP, ], ncol = 3)
##
spectralEntropy <- round(spectral_entropy_calculator(DIAfragmentationList[, 1:2], allowedWeightedSpectralEntropy = TRUE, noiseRemovalRatio = 1e-16)[[1]], 5)
##
L_fragments <- nrow(DIAfragmentationList)
DIA_list <- cbind(rep(i, L_fragments), rep(mz12CIPA[i], L_fragments), rep(RTIPA[i], L_fragments), rep(IntIPA[i], L_fragments), DIAfragmentationList[, 1:2],
rep(spectralEntropy, L_fragments), rep(MS2polarity[scanNumberApex2], L_fragments), rep(precursorCE_MS2[scanNumberApex2], L_fragments), DIAfragmentationList[, 3])
##############################################################
if (plotEICcheck) {
DIAEICdata <- do.call(rbind, lapply(x_fragment_dia, function(j) {
DIA_EICs[[j]][[1]]
}))
##
yMaxLimPlot <- max(c(Int_chrom_MS1, DIAEICdata[, 3]))
##
xLinesDiff <- c(0, which(abs(diff(DIAEICdata[, 1])) > 0), nrow(DIAEICdata))
nLines <- length(xLinesDiff)
##
legText <- rep("", nLines)
legText[1] <- paste0("(MS1) m/z = ", round(mz12CIPA[i], 5))
colors <- c("black", rainbow(nLines, alpha = 1))
legCol <- rep("", nLines)
legCol[1] <- colors[1]
##
orderLines <- do.call(rbind, lapply(2:nLines, function(p) {
c((xLinesDiff[p - 1] + 1), xLinesDiff[p])
}))
orderLines <- matrix(orderLines[orderMSP, ], ncol = 2)
##
alignedEICfilename <- paste0(outputDIAeic, "/", i, "_MS1_", mz12CIPA[i], "_RT_", RTIPA[i], ".png")
png(alignedEICfilename, width = 16, height = 8, units = "in", res = 100)
##
par(mar = c(5.1, 4.1, 4.1, 13.8))
plot(RT_chrom_MS1, Int_chrom_MS1, type = "l", ylim = c(0, yMaxLimPlot*1.01), lwd = 4, col = colors[1], cex = 4, yaxt = "n", xlab = "", ylab = "")
##
pCounter <- 1
for (p in 1:(nLines - 1)) {
pCounter <- pCounter + 1
##
xLines <- seq(orderLines[p, 1], orderLines[p, 2], 1)
##
lines(DIAEICdata[xLines, 2], DIAEICdata[xLines, 3], lwd = 2, col = colors[pCounter], cex = 4)
##
legText[pCounter] <- paste0("(MS2) m/z = ", round(mz_MS2[DIAEICdata[xLines[1], 1]], 5))
legCol[pCounter] <- colors[pCounter]
}
##
mtext(text = paste0("S = ", spectralEntropy), side = 3, adj = 1, line = 0.25, cex = 1.0)
mtext("Retention time (min)", side = 1, adj = 0.5, line = 2, cex = 1.35)
mtext("Intensity", side = 2, adj = 0.50, line = 1, cex = 1.35)
mtext(DIA_hrms_file, side = 3, adj = 0, line = 0.25, cex = 1.0)
legend(x = "topright", inset = c(-0.22, 0), legend = legText, lwd = c(4, rep(2, nLines)), cex = 1.125, bty = "n",
col = legCol, seg.len = 1, x.intersp = 0.5, y.intersp = 0.9, xpd = TRUE)
##
dev.off()
############################################################
}
}
}
}
}
}
}
return(DIA_list)
}
############################################################################
if (number_processing_threads == 1) {
DIA_peaklist <- do.call(rbind, lapply(selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}))
} else {
osType <- Sys.info()[['sysname']]
if (osType == "Windows") {
##
clust <- makeCluster(number_processing_threads)
clusterExport(clust, setdiff(ls(), c("clust", "selectedIPApeaks")), envir = environment())
##
DIA_peaklist <- do.call(rbind, parLapply(clust, selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}))
##
stopCluster(clust)
##
} else {
##
DIA_peaklist <- do.call(rbind, mclapply(selectedIPApeaks, function(i) {
call_DIA_peaklist(i)
}, mc.cores = number_processing_threads))
##
closeAllConnections()
##
}
}
##
if (!is.null(DIA_peaklist)) {
DIA_peaklist <- data.frame(DIA_peaklist)
DIA_peaklist[, 1] <- as.numeric(DIA_peaklist[, 1])
DIA_peaklist[, 5] <- round(as.numeric(DIA_peaklist[, 5]), 5)
DIA_peaklist[, 6] <- round(as.numeric(DIA_peaklist[, 6]), 0)
DIA_peaklist[, 10] <- round(as.numeric(DIA_peaklist[, 10]), 2)
} else {
DIA_peaklist <- data.frame(matrix(rep(0, 10), ncol = 10))
}
}
##
rownames(DIA_peaklist) <- NULL
colnames(DIA_peaklist) <- c("IDSL.IPA_PeakID", "PrecursorMZ", "Precursor_RT", "Precursor_Intensity", "CSA_mz_fragment", "CSA_int_fragment", "Weighted_spectral_entropy_0noiseRemoval", "Ion_mode", "Collision_energy", "Pearson_rho")
##
return(DIA_peaklist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.