Nothing
#' @name PC1
#' @title Apply the traditional principal component method to the Laplace factor model
#' @description This function performs Principal Component Analysis (PCA) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.
#' @param data The total data set to be analyzed.
#' @param m The number of principal components to retain in the analysis.
#' @return Ahat, Dhat
#' @examples
#' library(LaplacesDemon)
#' library(MASS)
#' n=1000
#' p=10
#' m=5
#' mu=t(matrix(rep(runif(p,0,1000),n),p,n))
#' mu0=as.matrix(runif(m,0))
#' sigma0=diag(runif(m,1))
#' F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
#' A=matrix(runif(p*m,-1,1),nrow=p)
#' lanor <- rlaplace(n*p,0,1)
#' epsilon=matrix(lanor,nrow=n)
#' D=diag(t(epsilon)%*%epsilon)
#' data=mu+F%*%t(A)+epsilon
#' results <- PC1(data, m)
#' print(results)
#' @export
#' @importFrom matrixcalc frobenius.norm
#' @importFrom stats cov
PC1<-function(data,m=m){
X<-scale(data)
R<-cor(X)
S<-R
eig<-eigen(S)
p<-nrow(S)
diag_S<-diag(S)
sum_rank<-sum(diag_S)
rowname<-paste("X",1:p,sep="")
colname<-paste("Factor",1:m,sep="")
Ahat<-matrix(0,nrow=p,ncol=m,
dimnames=list(rowname,colname))
rowname<-c("SS loadings","Proportion Var","Cumulative Var")
for (i in 1:m){
Ahat[,i]<-sqrt(eig$values[i])*eig$vectors[,i]
}
h2<-diag(Ahat%*%t(Ahat))
Dhat<-diag(S-h2)
return(list(Ahat=Ahat,Dhat=Dhat))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.